seasonal_dot {SWMPrExtension} | R Documentation |
Seasonal Dot Plot
Description
Plot average/min/max seasonal values faceted by season
Usage
seasonal_dot(swmpr_in, ...)
## S3 method for class 'swmpr'
seasonal_dot(
swmpr_in,
param = NULL,
lm_trend = FALSE,
lm_lab = FALSE,
free_y = FALSE,
log_trans = FALSE,
converted = FALSE,
plot_title = FALSE,
plot = TRUE,
...
)
Arguments
swmpr_in |
input swmpr object |
... |
additional arguments passed to other methods. See |
param |
chr string of variable to plot |
lm_trend |
logical, add linear trend line? |
lm_lab |
logical, add significance label? Statistically significant results will appear in bold. |
free_y |
logical, should the y-axis be free? Defaults to |
log_trans |
logical, should y-axis be log? Defaults to |
converted |
logical, were the units converted from the original units used by CDMO? Defaults to |
plot_title |
logical, should the station name be included as the plot title? Defaults to |
plot |
logical, should a plot be returned? Defaults to |
Details
This function summarizes minimum, mean, and maximum values calculated on a seasonal basis to allow for easier intra-season comparisons over time.
lm_trend = TRUE
adds a linear regression to the plot, and lm_lab = TRUE
will add p-values from the linear regression to the plot. If the p-values are significant (p < 0.05) then the text will appear in bold. lm_lab
text is color coded to match with the corresponding dots.
Value
Returns a ggplot
object
Author(s)
Julie Padilla, Dave Eslinger
See Also
ggplot
, assign_season
, y_labeler
Examples
dat_wq <- elksmwq
#dat_wq <- subset(dat_wq, subset = c('2010-01-01 0:00', '2017-01-01 0:00'))
dat_wq <- qaqc(dat_wq, qaqc_keep = c(0, 3, 5))
x <-
seasonal_dot(dat_wq, param = 'do_mgl'
, lm_trend = TRUE
, lm_lab = TRUE
, plot_title = TRUE)
y <-
seasonal_dot(dat_wq, param = 'do_mgl'
, lm_trend = FALSE
, lm_lab = FALSE
, plot_title = TRUE)
z <-
seasonal_dot(dat_wq, param = 'do_mgl'
, lm_trend = TRUE
, lm_lab = FALSE
, plot_title = TRUE)
dat_nut <- elknmnut
dat_nut <- subset(dat_nut, subset = c('2007-01-01 0:00', '2017-01-01 0:00'))
dat_nut <- qaqc(dat_nut, qaqc_keep = c(0, 3, 5))
x1 <-
seasonal_dot(dat_nut
, param = 'chla_n'
, season_grps = list(c(1,2,3), c(4,5,6), c(7,8,9), c(10, 11, 12))
, season_names = c('Winter', 'Spring', 'Summer', 'Fall')
, season_start = 'Spring'
, lm_trend = FALSE
, lm_lab = FALSE
, plot_title = TRUE)
y1 <-
seasonal_dot(dat_nut, param = 'chla_n'
, lm_trend = TRUE
, lm_lab = FALSE
, plot_title = TRUE)
z1 <-
seasonal_dot(dat_nut, param = 'chla_n'
, lm_trend = TRUE
, lm_lab = TRUE
, plot_title = TRUE)