tcpPlot {SUMMER} | R Documentation |
Discrete-color maps based on the True Classification Probabilities
Description
Discrete-color maps based on the True Classification Probabilities
Usage
tcpPlot(
draws,
geo,
by.geo = NULL,
year_plot = NULL,
ncol = 4,
per1000 = FALSE,
thresholds = NULL,
intervals = 3,
size.title = 0.7,
legend.label = NULL,
border = "gray20",
size = 0.5
)
Arguments
draws |
a posterior draw object from |
geo |
SpatialPolygonsDataFrame object for the map |
by.geo |
variable name specifying region names in geo |
year_plot |
vector of year string vector to be plotted. |
ncol |
number of columns in the output figure. |
per1000 |
logical indicator to multiply results by 1000. |
thresholds |
a vector of thresholds (on the mortality scale) defining the discrete color scale of the maps. |
intervals |
number of quantile intervals defining the discrete color scale of the maps. Required when thresholds are not specified. |
size.title |
a numerical value giving the amount by which the plot title should be magnified relative to the default. |
legend.label |
Label for the color legend. |
border |
color of the border |
size |
size of the border |
Value
a list of True Classification Probability (TCP) tables, a list of individual spplot maps, and a gridded array of all maps.
Author(s)
Tracy Qi Dong, Zehang Richard Li
References
Tracy Qi Dong, and Jon Wakefield. (2020) Modeling and presentation of vaccination coverage estimates using data from household surveys. arXiv preprint arXiv:2004.03127.
Examples
## Not run:
library(dplyr)
data(DemoData)
# Create dataset of counts, unstratified
counts.all <- NULL
for(i in 1:length(DemoData)){
counts <- getCounts(DemoData[[i]][, c("clustid", "time", "age", "died",
"region")],
variables = 'died', by = c("age", "clustid", "region",
"time"))
counts <- counts %>% mutate(cluster = clustid, years = time, Y=died)
counts$strata <- NA
counts$survey <- names(DemoData)[i]
counts.all <- rbind(counts.all, counts)
}
# fit cluster-level model on the periods
periods <- levels(DemoData[[1]]$time)
fit <- smoothCluster(data = counts.all,
Amat = DemoMap$Amat,
time.model = "rw2",
st.time.model = "rw1",
strata.time.effect = TRUE,
survey.effect = TRUE,
family = "betabinomial",
year_label = c(periods, "15-19"))
est <- getSmoothed(fit, nsim = 1000, save.draws=TRUE)
tcp <- tcpPlot(est, DemoMap$geo, by.geo = "REGNAME", interval = 3, year_plot = periods)
tcp$g
## End(Not run)