hatchPlot {SUMMER} | R Documentation |
Plot maps with uncertainty hatching.
Description
This function visualizes the map with different variables. The input data frame can be either the long or wide format.
Usage
hatchPlot(
data,
variables,
values = NULL,
labels = NULL,
geo,
by.data,
by.geo,
is.long = FALSE,
lower,
upper,
lim = NULL,
lim.CI = NULL,
breaks.CI = NULL,
ncol = 4,
hatch = NULL,
border = NULL,
size = 1,
legend.label = NULL,
per1000 = FALSE,
direction = 1,
...
)
Arguments
data |
a data frame with variables to be plotted |
variables |
vector of variables to be plotted. If long format of data is used, only one variable can be selected |
values |
the column corresponding to the values to be plotted, only used when long format of data is used |
labels |
vector of labels to use for each variable, only used when wide format of data is used |
geo |
SpatialPolygonsDataFrame object for the map |
by.data |
column name specifying region names in the data |
by.geo |
variable name specifying region names in the data |
is.long |
logical indicator of whether the data is in the long format, default to FALSE |
lower |
column name of the lower bound of the CI |
upper |
column name of the upper bound of the CI |
lim |
fixed range of values for the variables to plot |
lim.CI |
fixed range of the CI widths to plot |
breaks.CI |
a vector of numerical values that decides the breaks in the CI widths to be shown |
ncol |
number of columns for the output tabs |
hatch |
color of the hatching lines. |
border |
color of the polygon borders. |
size |
line width of the polygon borders. |
legend.label |
Label for the color legend. |
per1000 |
logical indicator to plot mortality rates as rates per 1,000 live births. Note that the added comparison data should always be in the probability scale. |
direction |
Direction of the color scheme. It can be either 1 (smaller values are darker) or -1 (higher values are darker). Default is set to 1. |
... |
unused. |
Author(s)
Zehang Richard Li, Katie Wilson
Examples
## Not run:
years <- levels(DemoData[[1]]$time)
# obtain direct estimates
data <- getDirectList(births = DemoData,
years = years,
regionVar = "region", timeVar = "time",
clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights",
geo.recode = NULL)
# obtain direct estimates
data_multi <- getDirectList(births = DemoData, years = years,
regionVar = "region", timeVar = "time", clusterVar = "~clustid+id",
ageVar = "age", weightsVar = "weights", geo.recode = NULL)
data <- aggregateSurvey(data_multi)
fit2 <- smoothDirect(data = data, geo = geo, Amat = mat,
year_label = years.all, year_range = c(1985, 2019),
rw = 2, is.yearly=TRUE, m = 5, type.st = 4)
out2 <- getSmoothed(fit2)
plot(out2, is.yearly=TRUE, is.subnational=TRUE)
hatchPlot(data = subset(out2, is.yearly==FALSE), geo = geo,
variables=c("years"), values = c("median"),
by.data = "region", by.geo = "REGNAME",
lower = "lower", upper = "upper", is.long=TRUE)
## End(Not run)