receptorAbundanceEstimation {STREAK} | R Documentation |
Receptor abundance estimation for single cell RNA-sequencing (scRNA-seq) data using gene set scoring and thresholding.
Description
Performs receptor abundance estimation for m x n
scRNA-seq target data using gene set scoring and thresholding. scRNA-seq target counts are normalized and
reduced rank reconstructed (RRR) using the SPECK::randomizedRRR()
function. Gene set scoring is next performed leveraging expression from
the top most weighted genes based on the gene sets weights membership matrix with the VAM::vam()
function. The resulting cell-specific gene set scores
are then thresholded utilizing the Ckmeans.1d.dp::Ckmeans.1d.dp()
function. Note that this function only performs normalization
and does not perform any quality control (QC) checks on the inputted target scRNA-seq counts matrix. Any QC needed can be performed on the target matrix before passing it
as an input to the function.
Usage
receptorAbundanceEstimation(
target.rnaseq,
receptor.geneset.matrix,
num.genes = 10,
rank.range.end = 100,
min.consec.diff = 0.01,
rep.consec.diff = 2,
manual.rank = NULL,
seed.rsvd = 1,
max.num.clusters = 4,
seed.ckmeans = 2
)
Arguments
target.rnaseq |
|
receptor.geneset.matrix |
|
num.genes |
Number of top most weighted genes for subsequent gene set scoring and thresholding. |
rank.range.end |
See documentation for the |
min.consec.diff |
See documentation for the |
rep.consec.diff |
See documentation for the |
manual.rank |
See documentation for the |
seed.rsvd |
See documentation for the |
max.num.clusters |
See documentation for the |
seed.ckmeans |
See documentation for the |
Value
-
receptor.abundance.estimates
- Am x h
matrix consisting of abundance estimates form
cells inh
receptors.
Examples
data("train.malt.rna.mat")
data("train.malt.adt.mat")
receptor.geneset.matrix.out <- receptorGeneSetConstruction(train.rnaseq =
train.malt.rna.mat[1:100,1:80],
train.citeseq =
train.malt.adt.mat[1:100,1:2],
rank.range.end = 70,
min.consec.diff = 0.01,
rep.consec.diff = 2,
manual.rank = NULL,
seed.rsvd = 1)
dim(receptor.geneset.matrix.out)
head(receptor.geneset.matrix.out)
data("target.malt.rna.mat")
receptor.abundance.estimates.out <- receptorAbundanceEstimation(target.rnaseq =
target.malt.rna.mat[1:200,1:80],
receptor.geneset.matrix =
receptor.geneset.matrix.out,
num.genes = 10, rank.range.end = 70,
min.consec.diff = 0.01,
rep.consec.diff = 2,
manual.rank = NULL, seed.rsvd = 1,
max.num.clusters = 4, seed.ckmeans = 2)
dim(receptor.abundance.estimates.out)
head(receptor.abundance.estimates.out)