set_and_reps_schemes {STMr} | R Documentation |
Set and Rep Schemes
Description
Set and Rep Schemes
Usage
scheme_generic(
reps,
adjustment,
vertical_planning,
vertical_planning_control = list(),
progression_table,
progression_table_control = list()
)
scheme_wave(
reps = c(10, 8, 6),
adjustment = -rev((seq_along(reps) - 1) * 5)/100,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal")
)
scheme_plateau(
reps = c(5, 5, 5),
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal")
)
scheme_step(
reps = c(5, 5, 5),
adjustment = -rev((seq_along(reps) - 1) * 10)/100,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "intensive")
)
scheme_step_reverse(
reps = c(5, 5, 5),
adjustment = -((seq_along(reps) - 1) * 10)/100,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "intensive")
)
scheme_wave_descending(
reps = c(6, 8, 10),
adjustment = -rev((seq_along(reps) - 1) * 5)/100,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal")
)
scheme_light_heavy(
reps = c(10, 5, 10, 5),
adjustment = c(-0.1, 0)[(seq_along(reps)%%2) + 1],
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal")
)
scheme_pyramid(
reps = c(12, 10, 8, 10, 12),
adjustment = 0,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "extensive")
)
scheme_pyramid_reverse(
reps = c(8, 10, 12, 10, 8),
adjustment = 0,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "extensive")
)
scheme_rep_acc(
reps = c(10, 10, 10),
adjustment = 0,
vertical_planning_control = list(step = rep(0, 4)),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal")
)
scheme_ladder(
reps = c(3, 5, 10),
adjustment = 0,
vertical_planning = vertical_constant,
vertical_planning_control = list(),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal")
)
scheme_manual(
index = NULL,
step,
sets = 1,
reps,
adjustment = 0,
perc_1RM = NULL,
progression_table = progression_perc_drop,
progression_table_control = list(volume = "normal")
)
scheme_perc_1RM(reps = c(5, 5, 5), perc_1RM = c(0.4, 0.5, 0.6), n_steps = 4)
Arguments
reps |
Numeric vector indicating reps prescription |
adjustment |
Numeric vector indicating adjustments. Forwarded to |
vertical_planning |
Vertical planning function. Default is |
vertical_planning_control |
Arguments forwarded to the |
progression_table |
Progression table function. Default is |
progression_table_control |
Arguments forwarded to the |
index |
Numeric vector. If not provided, index will be
create using sequence of |
step |
Numeric vector |
sets |
Numeric vector. Used to replicate reps and adjustments |
perc_1RM |
Numeric vector of user provided 1RM percentage |
n_steps |
How many progression steps to generate? Default is 4 |
Value
Data frame with the following columns: reps
, index
, step
,
adjustment
, and perc_1RM
.
Functions
-
scheme_generic()
: Generic set and rep scheme.scheme_generic
is called in all other set and rep schemes - only the default parameters differ to make easier and quicker schemes writing and groupings -
scheme_wave()
: Wave set and rep scheme -
scheme_plateau()
: Plateau set and rep scheme -
scheme_step()
: Step set and rep scheme -
scheme_step_reverse()
: Reverse Step set and rep scheme -
scheme_wave_descending()
: Descending Wave set and rep scheme -
scheme_light_heavy()
: Light-Heavy set and rep scheme. Please note that theadjustment
column in the output will be wrong, hence set toNA
-
scheme_pyramid()
: Pyramid set and rep scheme -
scheme_pyramid_reverse()
: Reverse Pyramid set and rep scheme -
scheme_rep_acc()
: Rep Accumulation set and rep scheme -
scheme_ladder()
: Ladder set and rep scheme. Please note that theadjustment
column in the output will be wrong, hence set toNA
-
scheme_manual()
: Manual set and rep scheme -
scheme_perc_1RM()
: Manual %1RM set and rep scheme
Examples
scheme_generic(
reps = c(8, 6, 4, 8, 6, 4),
# Adjusting using lower %1RM (RIR Increment method used)
adjustment = c(4, 2, 0, 6, 4, 2),
vertical_planning = vertical_linear,
vertical_planning_control = list(reps_change = c(0, -2, -4)),
progression_table = progression_RIR_increment,
progression_table_control = list(volume = "extensive")
)
# Wave set and rep schemes
# --------------------------
scheme_wave()
scheme_wave(
reps = c(8, 6, 4, 8, 6, 4),
# Second wave with higher intensity
adjustment = c(-0.25, -0.15, 0.05, -0.2, -0.1, 0),
vertical_planning = vertical_block,
progression_table = progression_perc_drop,
progression_table_control = list(type = "ballistic")
)
# Adjusted second wave
# and using 3 steps progression
scheme_wave(
reps = c(8, 6, 4, 8, 6, 4),
# Adjusting using lower %1RM (progression_perc_drop method used)
adjustment = c(0, 0, 0, -0.1, -0.1, -0.1),
vertical_planning = vertical_linear,
vertical_planning_control = list(reps_change = c(0, -2, -4)),
progression_table = progression_perc_drop,
progression_table_control = list(volume = "extensive")
)
# Adjusted using RIR inc
# This time we adjust first wave as well, first two sets easier
scheme <- scheme_wave(
reps = c(8, 6, 4, 8, 6, 4),
# Adjusting using lower %1RM (RIR Increment method used)
adjustment = c(4, 2, 0, 6, 4, 2),
vertical_planning = vertical_linear,
vertical_planning_control = list(reps_change = c(0, -2, -4)),
progression_table = progression_RIR_increment,
progression_table_control = list(volume = "extensive")
)
plot(scheme)
# Plateau set and rep schemes
# --------------------------
scheme_plateau()
scheme <- scheme_plateau(
reps = c(3, 3, 3),
progression_table_control = list(type = "ballistic")
)
plot(scheme)
# Step set and rep schemes
# --------------------------
scheme_step()
scheme <- scheme_step(
reps = c(2, 2, 2),
adjustment = c(-0.1, -0.05, 0),
vertical_planning = vertical_linear_reverse,
progression_table_control = list(type = "ballistic")
)
plot(scheme)
# Reverse Step set and rep schemes
#- -------------------------
scheme <- scheme_step_reverse()
plot(scheme)
# Descending Wave set and rep schemes
# --------------------------
scheme <- scheme_wave_descending()
plot(scheme)
# Light-Heavy set and rep schemes
# --------------------------
scheme <- scheme_light_heavy()
plot(scheme)
# Pyramid set and rep schemes
# --------------------------
scheme <- scheme_pyramid()
plot(scheme)
# Reverse Pyramid set and rep schemes
# --------------------------
scheme <- scheme_pyramid_reverse()
plot(scheme)
# Rep Accumulation set and rep schemes
# --------------------------
scheme_rep_acc()
# Generate Wave scheme with rep accumulation vertical progression
# This functions doesn't allow you to use different vertical planning
# options
scheme <- scheme_rep_acc(reps = c(10, 8, 6), adjustment = c(-0.1, -0.05, 0))
plot(scheme)
# Other options is to use `.vertical_rep_accumulation.post()` and
# apply it after
# The default vertical progression is `vertical_const()`
scheme <- scheme_wave(reps = c(10, 8, 6), adjustment = c(-0.1, -0.05, 0))
.vertical_rep_accumulation.post(scheme)
# We can also create "undulating" rep decrements
.vertical_rep_accumulation.post(
scheme,
rep_decrement = c(-3, -1, -2, 0)
)
# `scheme_rep_acc` will not allow you to generate `scheme_ladder()`
# and `scheme_scheme_light_heavy()`
# You must use `.vertical_rep_accumulation.post()` to do so
scheme <- scheme_ladder()
scheme <- .vertical_rep_accumulation.post(scheme)
plot(scheme)
# Please note that reps < 1 are removed. If you do not want this,
# use `remove_reps = FALSE` parameter
scheme <- scheme_ladder()
scheme <- .vertical_rep_accumulation.post(scheme, remove_reps = FALSE)
plot(scheme)
# Ladder set and rep schemes
# --------------------------
scheme <- scheme_ladder()
plot(scheme)
# Manual set and rep schemes
# --------------------------
scheme_df <- data.frame(
index = 1, # Use this just as an example
step = c(-3, -2, -1, 0),
# Sets are just an easy way to repeat reps and adjustment
sets = c(5, 4, 3, 2),
reps = c(5, 4, 3, 2),
adjustment = 0
)
# Step index is estimated to be sequences of steps
# If you want specific indexes, use it as an argument (see next example)
scheme <- scheme_manual(
step = scheme_df$step,
sets = scheme_df$sets,
reps = scheme_df$reps,
adjustment = scheme_df$adjustment
)
plot(scheme)
# Here we are going to provide our own index
scheme <- scheme_manual(
index = scheme_df$index,
step = scheme_df$step,
sets = scheme_df$sets,
reps = scheme_df$reps,
adjustment = scheme_df$adjustment
)
plot(scheme)
# More complicated example
scheme_df <- data.frame(
step = c(-3, -3, -3, -3, -2, -2, -2, -1, -1, 0),
sets = 1,
reps = c(5, 5, 5, 5, 3, 2, 1, 2, 1, 1),
adjustment = c(0, -0.05, -0.1, -0.15, -0.1, -0.05, 0, -0.1, 0, 0)
)
scheme_df
scheme <- scheme_manual(
step = scheme_df$step,
sets = scheme_df$sets,
reps = scheme_df$reps,
adjustment = scheme_df$adjustment,
# Select another progression table
progression_table = progression_DI,
# Extra parameters for the progression table
progression_table_control = list(
volume = "extensive",
type = "ballistic",
max_perc_1RM_func = max_perc_1RM_linear,
klin = 36
)
)
plot(scheme)
# Provide %1RM manually
scheme_df <- data.frame(
index = rep(c(1, 2, 3, 4), each = 3),
reps = rep(c(5, 5, 5), 4),
perc_1RM = rep(c(0.4, 0.5, 0.6), 4)
)
warmup_scheme <- scheme_manual(
index = scheme_df$index,
reps = scheme_df$reps,
perc_1RM = scheme_df$perc_1RM
)
plot(warmup_scheme)
# Manual %1RM set and rep schemes
# --------------------------
warmup_scheme <- scheme_perc_1RM(
reps = c(10, 8, 6),
perc_1RM = c(0.4, 0.5, 0.6),
n_steps = 3
)
plot(warmup_scheme)