estimate_functions_mixed {STMr} | R Documentation |
Estimate relationship between reps and weight using the non-linear mixed-effects regression
Description
These functions provide estimated 1RM and parameter values using the mixed-effect regression. By default,
target variable is the reps performed, while the predictor is the perc_1RM
or
weight
. To reverse this, use the reverse = TRUE
argument
Usage
estimate_k_mixed(athlete, perc_1RM, reps, eRIR = 0, reverse = FALSE, ...)
estimate_k_generic_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
k = 0.0333,
reverse = FALSE,
random = zeroRM ~ 1,
...
)
estimate_k_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = k + zeroRM ~ 1,
...
)
estimate_kmod_mixed(athlete, perc_1RM, reps, eRIR = 0, reverse = FALSE, ...)
estimate_kmod_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = kmod + oneRM ~ 1,
...
)
estimate_klin_mixed(athlete, perc_1RM, reps, eRIR = 0, reverse = FALSE, ...)
estimate_klin_1RM_mixed(
athlete,
weight,
reps,
eRIR = 0,
reverse = FALSE,
random = klin + oneRM ~ 1,
...
)
Arguments
athlete |
Athlete identifier |
perc_1RM |
%1RM |
reps |
Number of repetitions done |
eRIR |
Subjective estimation of reps-in-reserve (eRIR) |
reverse |
Logical, default is |
... |
Forwarded to |
weight |
Weight used |
k |
Value for the generic Epley's equation, which is by default equal to 0.0333 |
random |
Random parameter forwarded to |
Value
nlme
object
Functions
-
estimate_k_mixed()
: Estimate the parameterk
in the Epley's equation -
estimate_k_generic_1RM_mixed()
: Provides the model with generick
parameter, as well as estimated1RM
. This is a novel estimation function that uses the absolute weights -
estimate_k_1RM_mixed()
: Estimate the parameterk
in the Epley's equation, as well as1RM
. This is a novel estimation function that uses the absolute weights -
estimate_kmod_mixed()
: Estimate the parameterkmod
in the Modified Epley's equation -
estimate_kmod_1RM_mixed()
: Estimate the parameterkmod
in the Modified Epley's equation, as well as1RM
. This is a novel estimation function that uses the absolute weights -
estimate_klin_mixed()
: Estimate the parameterklin
in the Linear/Brzycki's equation -
estimate_klin_1RM_mixed()
: Estimate the parameterklin
in the Linear/Brzycki equation, as well as1RM
. This is a novel estimation function that uses the absolute weights
Examples
# ---------------------------------------------------------
# Epley's model
m1 <- estimate_k_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Generic Epley's model that also estimates 1RM
m1 <- estimate_k_generic_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Epley's model that also estimates 1RM
m1 <- estimate_k_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Modifed Epley's model
m1 <- estimate_kmod_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Modified Epley's model that also estimates 1RM
m1 <- estimate_kmod_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Linear/Brzycki model
m1 <- estimate_klin_mixed(
athlete = RTF_testing$Athlete,
perc_1RM = RTF_testing$`Real %1RM`,
reps = RTF_testing$nRM
)
coef(m1)
# ---------------------------------------------------------
# Linear/Brzycki model that also estimates 1RM
m1 <- estimate_klin_1RM_mixed(
athlete = RTF_testing$Athlete,
weight = RTF_testing$`Real Weight`,
reps = RTF_testing$nRM
)
coef(m1)