adj_reps {STMr} | R Documentation |
Family of functions to adjust number of repetition
Description
These functions are reverse version of the adj_perc_1RM
family of functions. Use these when you want to estimate number of
repetitions to be used when using the known %1RM and level of
adjustment
Usage
adj_reps_RIR(
perc_1RM,
adjustment = 0,
mfactor = 1,
max_reps_func = max_reps_epley,
...
)
adj_reps_DI(
perc_1RM,
adjustment = 1,
mfactor = 1,
max_reps_func = max_reps_epley,
...
)
adj_reps_rel_int(
perc_1RM,
adjustment = 1,
mfactor = 1,
max_reps_func = max_reps_epley,
...
)
adj_reps_perc_MR(
perc_1RM,
adjustment = 1,
mfactor = 1,
max_reps_func = max_reps_epley,
...
)
Arguments
perc_1RM |
Numeric vector. %1RM used (use 0.5 for 50%, 0.9 for 90%) |
adjustment |
Numeric vector. Adjustment to be implemented |
mfactor |
Numeric vector. Default is 1 (i.e., no adjustment).
Use |
max_reps_func |
Max reps function to be used. Default is |
... |
Forwarded to |
Value
Numeric vector. Predicted number of repetitions to be performed
Functions
-
adj_reps_RIR()
: Adjust number of repetitions using the Reps In Reserve (RIR) approach -
adj_reps_DI()
: Adjust number of repetitions using the Deducted Intensity (DI) approach -
adj_reps_rel_int()
: Adjust number of repetitions using the Relative Intensity (RelInt) approach -
adj_reps_perc_MR()
: Adjust number of repetitions using the % max reps (%MR) approach
Examples
# ------------------------------------------
# Adjustment using Reps In Reserve (RIR)
adj_reps_RIR(0.75)
# Use ballistic adjustment (this implies doing half the reps)
adj_reps_RIR(0.75, mfactor = 2)
# Use 2 reps in reserve
adj_reps_RIR(0.75, adjustment = 2)
# Use Linear model
adj_reps_RIR(0.75, max_reps_func = max_reps_linear, adjustment = 2)
# Use Modifed Epley's equation with a custom parameter values
adj_reps_RIR(
0.75,
max_reps_func = max_reps_modified_epley,
adjustment = 2,
kmod = 0.06
)
# ------------------------------------------
# Adjustment using Deducted Intensity (DI)
adj_reps_DI(0.75)
# Use ballistic adjustment (this implies doing half the reps)
adj_reps_DI(0.75, mfactor = 2)
# Use 10% deducted intensity
adj_reps_DI(0.75, adjustment = -0.1)
# Use Linear model
adj_reps_DI(0.75, max_reps_func = max_reps_linear, adjustment = -0.1)
# Use Modifed Epley's equation with a custom parameter values
adj_reps_DI(
0.75,
max_reps_func = max_reps_modified_epley,
adjustment = -0.1,
kmod = 0.06
)
# ------------------------------------------
# Adjustment using Relative Intensity (RelInt)
adj_reps_rel_int(0.75)
# Use ballistic adjustment (this implies doing half the reps)
adj_reps_rel_int(0.75, mfactor = 2)
# Use 85% relative intensity
adj_reps_rel_int(0.75, adjustment = 0.85)
# Use Linear model
adj_reps_rel_int(0.75, max_reps_func = max_reps_linear, adjustment = 0.85)
# Use Modifed Epley's equation with a custom parameter values
adj_reps_rel_int(
0.75,
max_reps_func = max_reps_modified_epley,
adjustment = 0.85,
kmod = 0.06
)
# ------------------------------------------
# Adjustment using % max reps (%MR)
adj_reps_perc_MR(0.75)
# Use ballistic adjustment (this implies doing half the reps)
adj_reps_perc_MR(0.75, mfactor = 2)
# Use 85% of max reps
adj_reps_perc_MR(0.75, adjustment = 0.85)
# Use Linear model
adj_reps_perc_MR(0.75, max_reps_func = max_reps_linear, adjustment = 0.85)
# Use Modifed Epley's equation with a custom parameter values
adj_reps_perc_MR(
0.75,
max_reps_func = max_reps_modified_epley,
adjustment = 0.85,
kmod = 0.06
)