initSOM {SOMbrero} | R Documentation |
Initialize parameters for the SOM algorithm
Description
The initSOM
function returns a paramSOM
class object that
contains the parameters needed to run the SOM algorithm.
Usage
initSOM(
dimension = c(5, 5),
topo = c("square", "hexagonal"),
radius.type = c("gaussian", "letremy"),
dist.type = switch(match.arg(radius.type), letremy = "letremy", gaussian = "euclidean"),
type = c("numeric", "relational", "korresp"),
mode = c("online"),
affectation = c("standard", "heskes"),
maxit = 500,
nb.save = 0,
verbose = FALSE,
proto0 = NULL,
init.proto = switch(type, numeric = "random", relational = "obs", korresp = "random"),
scaling = switch(type, numeric = "unitvar", relational = "none", korresp = "chi2"),
eps0 = 1
)
## S3 method for class 'paramSOM'
print(x, ...)
## S3 method for class 'paramSOM'
summary(object, ...)
Arguments
dimension |
Vector of two integer points corresponding to the x
dimension and the y dimension of the |
topo |
The topology to be used to build the grid of the |
radius.type |
The neighborhood type. Default value is
|
dist.type |
The neighborhood relationship on the grid. One of
|
type |
The SOM algorithm type. Possible values are: |
mode |
The SOM algorithm mode. Default value is |
affectation |
The SOM affectation type. Default value is |
maxit |
The maximum number of iterations to be done during the SOM
algorithm process. Default value is |
nb.save |
The number of intermediate back-ups to be done during the
algorithm process. Default value is |
verbose |
The boolean value which activates the verbose mode during the
SOM algorithm process. Default value is |
proto0 |
The initial prototypes. Default value is |
init.proto |
The method to be used to initialize the prototypes, which
may be |
scaling |
The type of data pre-processing. For |
eps0 |
The scaling value for the stochastic gradient descent step in the
prototypes' update. The scaling value for the stochastic gradient descent
step is equal to
|
x |
an object of class |
... |
not used |
object |
an object of class |
Value
The initSOM
function returns an object of class
paramSOM
which is a list of the parameters passed to the
initSOM
function, plus the default parameters for the ones not
specified by the user.
Author(s)
Élise Maigné elise.maigne@inrae.fr
Madalina Olteanu olteanu@ceremade.dauphine.fr
Nathalie Vialaneix nathalie.vialaneix@inrae.fr
References
Ben-Hur A., Weston J. (2010) A user's guide to support vector machine. In: Data Mining Techniques for the Life Sciences, Springer-Verlag, 223-239.
Heskes T. (1999) Energy functions for self-organizing maps. In: Kohonen Maps, Oja E., Kaski S. (Eds.), Elsevier, 303-315.
Lee J., Verleysen M. (2007) Nonlinear Dimensionality Reduction. Information Science and Statistics series, Springer.
Letrémy P. (2005) Programmes basés sur l'algorithme de Kohonen et dediés à l'analyse des données. SAS/IML programs for 'korresp'.
Rossi F. (2013) yasomi: Yet Another Self-Organising Map Implementation. R package, version 0.3. https://github.com/fabrice-rossi/yasomi
See Also
See initGrid
for creating a SOM prior structure
(grid).
Examples
# create a default 'paramSOM' class object
default.paramSOM <- initSOM()
summary(default.paramSOM)