Imputation {SGB} | R Documentation |
Imputation of missing parts in compositions from a SGB model
Description
Applied to a completely missing composition, the function returns the Aitchison expectation.
Applied to a partially missing composition, it returns the conditional Aitchison expectation, given the observed sub-composition.
Applied to a complete case, it returns the complete case.
Usage
impute.regSGB(obj, dsup, usup)
Arguments
obj |
list, output of regSGB. |
dsup |
data frame with explanatory variables for the incomplete compositions. Missing values not allowed. |
usup |
compositions corresponding to |
Value
data frame with imputed compositions instead of missing or partially missing compositions. Complete cases are also returned.
Examples
## Arctic lake
data(arc)
arcmis <- arc
arc[11:13,]
## Introduce NA alues
arcmis[11,2] <- NA # "core" observation
arcmis[12,3] <- NA # outlying clay value
arcmis[13,1:3] <- NA # totally missing observation
umis <- arcmis[,1:3]
umis <- umis/rowSums(umis,na.rm=TRUE)
umis[11:13,]
d <- data.frame(depth=arc[["depth"]])
## original compositions
arc[11:13,1:3]
## unconditional predicted value
MeanA.SGB(oilr[["par"]][1],oilr[["scale"]],oilr[["par"]][4:6] )[11:13,]
## predicted value given the sub-composition (sand,clay) for 11, (sand,silt) for 12
impute.regSGB(oilr,arcmis,umis)[11:13, ]
impute.regSGB(oilr,arcmis[11:13, ],umis[11:13, ]) # same result.
[Package SGB version 1.0.1.1 Index]