SCRIPsimu {SCRIP} | R Documentation |
SCRIP simulation
Description
Simulate count data for single cell RNA-sequencing using SCIRP method
Usage
SCRIPsimu(
data,
params,
method = "single",
base_allcellmeans_SC = NULL,
pre.bcv.df = NULL,
libsize = NULL,
bcv.shrink = 1,
Dropout_rate = NULL,
mode = "GP-trendedBCV",
de.prob = NULL,
de.downProb = NULL,
de.facLoc = NULL,
de.facScale = NULL,
path.skew = NULL,
batch.facLoc = NULL,
batch.facScale = NULL,
path.nSteps = NULL,
...
)
Arguments
data |
data matrix required to fit the mean-BCV trend for simulation |
params |
SplatParams object containing parameters for the simulation |
method |
"single", "groups" or "paths" |
base_allcellmeans_SC |
base mean vector provided to help setting DE analysis |
pre.bcv.df |
BCV.df enables us to change the variation of BCV values |
libsize |
library size can be provided directly |
bcv.shrink |
factor to control the BCV levels |
Dropout_rate |
factor to control the dropout rate directly |
mode |
"GP-commonBCV", "BP-commonBCV", "BP", "BGP-commonBCV" and "BGP-trendedBCV" |
de.prob |
the proportion of DE genes |
de.downProb |
the proportion of down-regulated DE genes |
de.facLoc |
DE location factor |
de.facScale |
DE scale factor |
path.skew |
Controls how likely cells are from the start or end point of the path |
batch.facLoc |
DE location factor in batch |
batch.facScale |
DE scale factor in batch |
path.nSteps |
number of steps between the start point and end point for each path |
... |
Other parameters |
Value
SingleCellExperiment file
Examples
data(params_acinar)
data(acinar.data)
sim_trend = SCRIPsimu(data=acinar.data, params=params_acinar, mode="GP-trendedBCV")