thinFeatures {SAiVE} | R Documentation |
Remove irrelevant predictor variables
Description
Uses VSURF::VSURF()
to build random forests and remove irrelevant predictor variables from a data.frame containing an outcome variable and 2 or more predictor variables.
Usage
thinFeatures(data, outcome_col, n.cores = NULL)
Arguments
data |
A data.frame containing a column for the outcome variable and n columns for predictor variables. |
outcome_col |
The name of the outcome variable column. |
n.cores |
The maximum number of cores to use. Leave NULL to use all cores minus 1. |
Value
A list of two data.frames: the outcome of the VSURF algorithm and the data after applying the VSURF results (rows removed if applicable)
Examples
# thinFeatures on 'permafrost' data set
data(permafrost)
res <- thinFeatures(permafrost, "Type", n.cores = 2)
# Results will vary due to inherent randomness of random forests!
[Package SAiVE version 1.0.6 Index]