kmplotmlx {RsSimulx}R Documentation

Kaplan Meier plot

Description

Plot empirical survival functions using the Kaplan Meier estimate.

Usage

kmplotmlx(
  r,
  index = 1,
  level = NULL,
  time = NULL,
  cens = TRUE,
  plot = TRUE,
  color = "#e05969",
  group = NULL,
  facet = TRUE,
  labels = NULL
)

Arguments

r

a data frame with a column ‘⁠id⁠’, a column ‘⁠time⁠’, a column with values and possibly a column ‘⁠group⁠’.

index

an integer: index=k means that the survival function for the k-th event is displayed. Default is index=1.

level

a number between 0 and 1: confidence interval level.

time

a vector of time points where the survival function is evaluated.

cens

if TRUE right censoring times are diplayed.

plot

if TRUE the estimated survival function is displayed, if FALSE the values are returned

color

color to be used for the plots (default="#e05969")

group

variable to be used for defining groups (by default, ‘⁠group⁠’ is used when it exists)

facet

makes subplots for different groups if TRUE

labels

vector of strings

Details

See http://simulx.webpopix.org/mlxr/kmplotmlx/ for more details.

Value

a ggplot object if plot=TRUE ; otherwise, a list with fields:

Examples

## Not run: 
tteModel1 <- inlineModel("
  [LONGITUDINAL]
  input = {beta,lambda}  
  EQUATION:
  h=(beta/lambda)*(t/lambda)^(beta-1)
  DEFINITION:
  e = {type=event, maxEventNumber=1, rightCensoringTime=70, hazard=h}
  ")

  p1   <- c(beta=2.5,lambda=50)
  e    <- list(name='e', time=0)
  res1 <- simulx(model=tteModel1, parameter=p1, output=e, group=list(size=100))
  pl1  <- kmplotmlx(res1$e,level=0.95)
  print(pl1)

  p2   <- c(beta=2,lambda=45)
  g1   <- list(size=50, parameter=p1)
  g2   <- list(size=100, parameter=p2)
  res2 <- simulx(model=tteModel1, output=e, group=list(g1,g2))
  pl2  <- kmplotmlx(res2$e)
  print(pl2)

## End(Not run)

[Package RsSimulx version 2024.1 Index]