check_setup {RoBSA} | R Documentation |
Prints summary of "RoBSA"
corresponding to the input
Description
check_setup
prints summary of "RoBSA"
ensemble
corresponding to the specified formula, data, and priors.
This function is useful for checking the ensemble configuration prior
to fitting all models.
Usage
check_setup(
formula,
data,
priors = NULL,
test_predictors = NULL,
distributions = c("exp-aft", "weibull-aft", "lnorm-aft", "llogis-aft", "gamma-aft"),
distributions_weights = rep(1, length(distributions)),
prior_beta_null = get_default_prior_beta_null(),
prior_beta_alt = get_default_prior_beta_alt(),
prior_factor_null = get_default_prior_factor_null(),
prior_factor_alt = get_default_prior_factor_alt(),
prior_intercept = get_default_prior_intercept(),
prior_aux = get_default_prior_aux(),
chains = 3,
sample = 5000,
burnin = 2000,
adapt = 500,
thin = 1,
parallel = FALSE,
autofit = TRUE,
autofit_control = set_autofit_control(),
convergence_checks = set_convergence_checks(),
save = "all",
seed = NULL,
silent = FALSE,
rescale_data = FALSE,
models = FALSE,
...
)
Arguments
formula |
formula for the survival model |
data |
data frame containing the data |
priors |
names list of prior distributions for each
predictor. It allows users to specify both the null and alternative
hypothesis prior distributions by assigning a named list
(with |
test_predictors |
vector of predictor names
to be tested with Bayesian model-averaged testing.
Defaults to |
distributions |
distributions of parametric survival models |
distributions_weights |
prior odds for the competing distributions |
prior_beta_null |
default prior distribution for the null hypotheses of continuous predictors |
prior_beta_alt |
default prior distribution for the alternative hypotheses of continuous predictors |
prior_factor_null |
default prior distribution for the null hypotheses of categorical predictors |
prior_factor_alt |
default prior distribution for the alternative hypotheses of categorical predictors |
prior_intercept |
named list containing prior distribution for the intercepts (with names corresponding to the distributions) |
prior_aux |
named list containing prior distribution for the auxiliary parameters (with names corresponding to the distributions) |
chains |
a number of chains of the MCMC algorithm. |
sample |
a number of sampling iterations of the MCMC algorithm.
Defaults to |
burnin |
a number of burnin iterations of the MCMC algorithm.
Defaults to |
adapt |
a number of adaptation iterations of the MCMC algorithm.
Defaults to |
thin |
a thinning of the chains of the MCMC algorithm. Defaults to
|
parallel |
whether the individual models should be fitted in parallel.
Defaults to |
autofit |
whether the model should be fitted until the convergence
criteria (specified in |
autofit_control |
allows to pass autofit control settings with the
|
convergence_checks |
automatic convergence checks to assess the fitted
models, passed with |
save |
whether all models posterior distributions should be kept
after obtaining a model-averaged result. Defaults to |
seed |
a seed to be set before model fitting, marginal likelihood
computation, and posterior mixing for reproducibility of results. Defaults
to |
silent |
do not print the results. |
rescale_data |
whether continuous predictors should be rescaled prior to
estimating the model. Defaults to |
models |
should the models' details be printed. |
... |
additional arguments. |
Value
check_setup
invisibly returns list of summary tables.