| RoBSA {RoBSA} | R Documentation | 
Fit Robust Bayesian Survival Analysis
Description
RoBSA is used to estimate a robust Bayesian
survival analysis. The interface allows a complete customization of
the ensemble with different prior distributions for the null and
alternative hypothesis of each parameter.
(See README for an example.)
Usage
RoBSA(
  formula,
  data,
  priors = NULL,
  test_predictors = NULL,
  distributions = c("exp-aft", "weibull-aft", "lnorm-aft", "llogis-aft", "gamma-aft"),
  distributions_weights = rep(1, length(distributions)),
  prior_beta_null = get_default_prior_beta_null(),
  prior_beta_alt = get_default_prior_beta_alt(),
  prior_factor_null = get_default_prior_factor_null(),
  prior_factor_alt = get_default_prior_factor_alt(),
  prior_intercept = get_default_prior_intercept(),
  prior_aux = get_default_prior_aux(),
  chains = 3,
  sample = 5000,
  burnin = 2000,
  adapt = 500,
  thin = 1,
  parallel = FALSE,
  autofit = TRUE,
  autofit_control = set_autofit_control(),
  convergence_checks = set_convergence_checks(),
  save = "all",
  seed = NULL,
  silent = TRUE,
  rescale_data = FALSE,
  ...
)
Arguments
formula | 
 formula for the survival model  | 
data | 
 data frame containing the data  | 
priors | 
 names list of prior distributions for each
predictor. It allows users to specify both the null and alternative
hypothesis prior distributions by assigning a named list
(with   | 
test_predictors | 
 vector of predictor names
to be tested with Bayesian model-averaged testing.
Defaults to   | 
distributions | 
 distributions of parametric survival models  | 
distributions_weights | 
 prior odds for the competing distributions  | 
prior_beta_null | 
 default prior distribution for the null hypotheses of continuous predictors  | 
prior_beta_alt | 
 default prior distribution for the alternative hypotheses of continuous predictors  | 
prior_factor_null | 
 default prior distribution for the null hypotheses of categorical predictors  | 
prior_factor_alt | 
 default prior distribution for the alternative hypotheses of categorical predictors  | 
prior_intercept | 
 named list containing prior distribution for the intercepts (with names corresponding to the distributions)  | 
prior_aux | 
 named list containing prior distribution for the auxiliary parameters (with names corresponding to the distributions)  | 
chains | 
 a number of chains of the MCMC algorithm.  | 
sample | 
 a number of sampling iterations of the MCMC algorithm.
Defaults to   | 
burnin | 
 a number of burnin iterations of the MCMC algorithm.
Defaults to   | 
adapt | 
 a number of adaptation iterations of the MCMC algorithm.
Defaults to   | 
thin | 
 a thinning of the chains of the MCMC algorithm. Defaults to
  | 
parallel | 
 whether the individual models should be fitted in parallel.
Defaults to   | 
autofit | 
 whether the model should be fitted until the convergence
criteria (specified in   | 
autofit_control | 
 allows to pass autofit control settings with the
  | 
convergence_checks | 
 automatic convergence checks to assess the fitted
models, passed with   | 
save | 
 whether all models posterior distributions should be kept
after obtaining a model-averaged result. Defaults to   | 
seed | 
 a seed to be set before model fitting, marginal likelihood
computation, and posterior mixing for reproducibility of results. Defaults
to   | 
silent | 
 whether all print messages regarding the fitting process
should be suppressed. Defaults to   | 
rescale_data | 
 whether continuous predictors should be rescaled prior to
estimating the model. Defaults to   | 
... | 
 additional arguments.  | 
Value
RoBSA returns an object of class 'RoBSA'.
Examples
## Not run: 
# (execution of the example takes several minutes)
# example from the README (more details and explanation therein)
data(cancer, package = "survival")
priors <- calibrate_quartiles(median_t = 5, iq_range_t = 10, prior_sd = 0.5)
df <- data.frame(
  time         = veteran$time / 12,
  status       = veteran$status,
  treatment    = factor(ifelse(veteran$trt == 1, "standard", "new"), levels = c("standard", "new")),
  karno_scaled = veteran$karno / 100
)
RoBSA.options(check_scaling = FALSE)
fit <- RoBSA(
  Surv(time, status) ~ treatment + karno_scaled,
  data   = df,
  priors = list(
    treatment    = prior_factor("normal", parameters = list(mean = 0.30, sd = 0.15),
                                truncation = list(0, Inf), contrast = "treatment"),
    karno_scaled = prior("normal", parameters = list(mean = 0, sd = 1))
  ),
  test_predictors = "treatment",
  prior_intercept = priors[["intercept"]],
  prior_aux       = priors[["aux"]],
  parallel = TRUE, seed = 1
)
summary(fit)
## End(Not run)