mpi.applyLB {Rmpi} | R Documentation |
(Load balancing) parallel apply
Description
(Load balancing) parallellapply
and related functions.
Usage
mpi.applyLB(X, FUN, ..., apply.seq=NULL, comm=1)
mpi.parApply(X, MARGIN, FUN, ..., job.num = mpi.comm.size(comm)-1,
apply.seq=NULL, comm=1)
mpi.parLapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
comm=1)
mpi.parSapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify=TRUE, USE.NAMES = TRUE, comm=1)
mpi.parRapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
comm=1)
mpi.parCapply(X, FUN, ..., job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
comm=1)
mpi.parReplicate(n, expr, job.num=mpi.comm.size(comm)-1, apply.seq=NULL,
simplify = "array", comm=1)
mpi.parMM (A, B, job.num=mpi.comm.size(comm)-1, comm=1)
Arguments
X |
an array or matrix. |
MARGIN |
vector specifying the dimensions to use. |
FUN |
a function. |
simplify |
logical or character string; should the result be simplified to a vector, matrix or higher dimensional array if possible? |
USE.NAMES |
logical; if |
n |
number of replications. |
A |
a matrix |
B |
a matrix |
expr |
expression to evaluate repeatedly. |
job.num |
Total job numbers. If job numbers is bigger than total slave numbers (default value), a load balancing approach is used. |
apply.seq |
if reproducing the same computation (simulation) is desirable, set it to the integer vector .mpi.applyLB generated in previous computation (simulation). |
... |
optional arguments to |
comm |
a communicator number |
Details
Unless length of X
is no more than total slave numbers (slave.num) and in this case
mpi.applyLB
is the same as mpi.apply
, mpi.applyLB
sends a next job to a
slave who just delivered a finished job. The sequence of slaves who deliver results to master are
saved into .mpi.applyLB
. It keeps track which part of results done by which slaves.
.mpi.applyLB
can be used to reproduce the same simulation result if the same seed is
used and the argument apply.seq
is equal to .mpi.applyLB
.
With the default value of argument job.num
which is slave.num, mpi.parApply
,
mpi.parLapply
, mpi.parSapply
, mpi.parRapply
, mpi.parCapply
,
mpi.parSapply
, and mpi.parMM
are clones of snow's parApply, parLappy,
parSapply, parRapply, parCapply, parSapply, and parMM, respectively. When job.num
is
bigger than slave.num, a load balancing approach is used.
Warning
When using the argument apply.seq
with .mpi.applyLB
, be sure all settings are the same
as before, i.e., the same data, job.num, slave.num, and seed. Otherwise a deadlock could occur.
Notice that apply.seq
is useful only if job.num
is bigger than slave.num.
See Also
Examples
#Assume that there are some slaves running
#mpi.applyLB
#x=1:7
#mpi.applyLB(x,rnorm,mean=2,sd=4)
#get the same simulation
#mpi.remote.exec(set.seed(111))
#mpi.applyLB(x,rnorm,mean=2,sd=4)
#mpi.remote.exec(set.seed(111))
#mpi.applyLB(x,rnorm,mean=2,sd=4,apply.seq=.mpi.applyLB)
#mpi.parApply
#x=1:24
#dim(x)=c(2,3,4)
#mpi.parApply(x, MARGIN=c(1,2), FUN=mean,job.num = 5)
#mpi.parLapply
#mdat <- matrix(c(1,2,3, 7,8,9), nrow = 2, ncol=3, byrow=TRUE,
# dimnames = list(c("R.1", "R.2"), c("C.1", "C.2", "C.3")))
#mpi.parLapply(mdat, rnorm)
#mpi.parSapply
#mpi.parSapply(mdat, rnorm)
#mpi.parMM
#A=matrix(1:1000^2,ncol=1000)
#mpi.parMM(A,A)