set_control_sim {RiskMap} | R Documentation |
Set Control Parameters for Simulation
Description
This function sets control parameters for running simulations, particularly for MCMC methods. It allows users to specify the number of simulations, burn-in period, thinning interval, and various other parameters necessary for the simulation.
Usage
set_control_sim(
n_sim = 12000,
burnin = 2000,
thin = 10,
h = NULL,
c1.h = 0.01,
c2.h = 1e-04,
linear_model = FALSE
)
Arguments
n_sim |
Integer. The total number of simulations to run. Default is 12000. |
burnin |
Integer. The number of initial simulations to discard (burn-in period, used for the MCMC algorithm). Default is 2000. |
thin |
Integer. The interval at which simulations are recorded (thinning interval, used for the MCMC algorithm). Default is 10. |
h |
Numeric. An optional parameter. Must be non-negative if specified. |
c1.h |
Numeric. A control parameter for the simulation. Must be positive. Default is 0.01. |
c2.h |
Numeric. Another control parameter for the simulation. Must be between 0 and 1. Default is 1e-04. |
linear_model |
Logical. If TRUE, the function sets up parameters for a linear model and
only returns |
Details
The function validates the input parameters and ensures they are appropriate for the simulation that is used
in the glgpm
fitting function.
For non-linear models, it checks that n_sim
is greater than burnin
, that thin
is positive
and a divisor of (n_sim - burnin)
, and that h
, c1.h
, and c2.h
are within their
respective valid ranges.
If linear_model
is TRUE, only n_sim
and linear_model
are required, and the function
returns a list containing these parameters.
If linear_model
is FALSE, the function returns a list containing n_sim
, burnin
, thin
,
h
, c1.h
, c2.h
, and linear_model
.
Value
A list of control parameters for the simulation with class attribute "mcmc.RiskMap".
Author(s)
Emanuele Giorgi e.giorgi@lancaster.ac.uk
Claudio Fronterre c.fronterr@lancaster.ac.uk
See Also
Examples
# Example with default parameters
control_params <- set_control_sim()
# Example with custom parameters
control_params <- set_control_sim(n_sim = 15000, burnin = 3000, thin = 20)