Negative binomial regression {Rfast2} | R Documentation |
Negative binomial regression
Description
Negative binomial regression.
Usage
negbin.reg(y, x, tol = 1e-07, maxiters = 100)
Arguments
y |
The dependent variable, a numerical vector with integer valued numbers. |
x |
A matrix or a data.frame with the indendent variables. |
tol |
The tolerance value required by the Newton-Raphson to stop. |
maxiters |
The maximum iterations allowed. |
Details
A negative binomial regression model is fitted. The standard errors of the regressions are not returned as we do not compute the full Hessian matrix at each step of the Newton-Raphson.
Value
A list including:
be |
The regression coefficients. |
loglik |
The loglikelihood of the regression model. |
iters |
The iterations required by the Newton-Raphson. |
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Stefanos Fafalios stefanosfafalios@gmail.com.
See Also
Examples
y <- rnbinom(100, 10, 0.7)
x <- matrix( rnorm(100 * 3), ncol = 3 )
mod <- negbin.reg(y, x)
[Package Rfast2 version 0.1.5.2 Index]