Many metrics for a continuous response variable {Rfast2} | R Documentation |
any metrics for a continuous response variable
Description
any metrics for a continuous response variable.
Usage
colmses(y, yhat, parallel = FALSE)
colmaes(y, yhat, parallel = FALSE)
colpkl(y, yhat, parallel = FALSE)
colukl(y, yhat, parallel = FALSE)
Arguments
y |
A numerical vector. |
yhat |
A numerical matrix with with the predictions. |
parallel |
If you want parallel computations set this equal to TRUE. |
Details
The mean squared errors, mean absolute errors, and Kullback-Leibler divergence for percentages (colpkl) and non-negative values or discrete values (colukl) are computed.
Value
A vector with length equal to the number of columns of the "yhat" argument containing the relevant values computed for each column.
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
See Also
colaccs, bigknn.cv, mmpc, pc.sel
Examples
## 20 variables, hence 20 MSEs will be calculated
y <- rnorm(100, 1, 0.6)
yhat <- matrix( rnorm(100 * 20), ncol = 20 )
a <- colmses(y, yhat)
[Package Rfast2 version 0.1.5.2 Index]