Many metrics for a continuous response variable {Rfast2}R Documentation

any metrics for a continuous response variable

Description

any metrics for a continuous response variable.

Usage

colmses(y, yhat, parallel = FALSE)
colmaes(y, yhat, parallel = FALSE)
colpkl(y, yhat, parallel = FALSE)
colukl(y, yhat, parallel = FALSE)

Arguments

y

A numerical vector.

yhat

A numerical matrix with with the predictions.

parallel

If you want parallel computations set this equal to TRUE.

Details

The mean squared errors, mean absolute errors, and Kullback-Leibler divergence for percentages (colpkl) and non-negative values or discrete values (colukl) are computed.

Value

A vector with length equal to the number of columns of the "yhat" argument containing the relevant values computed for each column.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.

See Also

colaccs, bigknn.cv, mmpc, pc.sel

Examples

## 20 variables, hence 20 MSEs will be calculated
y <- rnorm(100, 1, 0.6)
yhat <- matrix( rnorm(100 * 20), ncol = 20 )
a <- colmses(y, yhat)

[Package Rfast2 version 0.1.5.2 Index]