Linear regression with clustered data {Rfast2} | R Documentation |
Linear regression with clustered data
Description
Linear regression with clustered data.
Usage
cluster.lm(y, x, id)
Arguments
y |
The dependent variable, a numerical vector with numbers. |
x |
A matrix or a data.frame with the indendent variables. |
id |
A numerical variable with 1, 2, ... indicating the subject. Unbalanced design is of course welcome. |
Details
A linear regression model for clustered data is fitted. For more information see Chapter 4.21 of Hansen (2019).
Value
A list including:
be |
The (beta) regression coefficients. |
becov |
Robust covariance matrix of the regression coefficients. |
seb |
Robust standard errors of the regression coefficients. |
Author(s)
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
References
Hansen, B. E. (2022). Econometrics.
See Also
Examples
y <- rnorm(200)
id <- sample(1:20, 200, replace = TRUE)
x <- rnorm(200, 3)
cluster.lm(y, x, id)
[Package Rfast2 version 0.1.5.2 Index]