Multivariate normal and t random values simulation {Rfast} | R Documentation |
Multivariate normal and t random values simulation
Description
Multivariate normal and t random values simulation.
Usage
rmvnorm(n, mu, sigma, seed = NULL)
rmvt(n, mu, sigma, v, seed = NULL)
Arguments
n |
The sample size, a numerical value. |
mu |
The mean vector in |
sigma |
The covariance matrix in |
v |
The degrees of freedom. |
seed |
If you want the same to be generated again use a seed for the generator, an integer number. |
Details
The algorithm uses univariate normal random values and transforms them to multivariate via a spectral decomposition. It is faster than the command "mvrnorm" available from MASS, and it allows for singular covariance matrices.
Value
A matrix with the simulated data.
Author(s)
Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>
References
Aitchison J. (1986). The statistical analysis of compositional data. Chapman & Hall.
See Also
Examples
x <- as.matrix(iris[, 1:4])
m <- colmeans(x)
s <- cov(x)
y <- rmvnorm(1000, m, s)
res<-colmeans(y)
res<-cov(y)
y <- NULL
[Package Rfast version 2.1.0 Index]