Logistic or Poisson regression with a single categorical predictor {Rfast} | R Documentation |
Logistic or Poisson regression with a single categorical predictor
Description
Logistic or Poisson regression with a single categorical predictor.
Usage
logistic.cat1(y, x, logged = FALSE)
poisson.cat1(y, x, logged = FALSE)
Arguments
y |
A numerical vector with values 0 or 1. |
x |
A numerical vector with discrete numbers or a factor variable. This is suppose to be a categorical predictor. If you supply a continuous valued vector the function will obviously provide wrong results. Note: For the "binomial.anova" if this is a numerical vector it must contain strictly positive numbers, i.e. 1, 2, 3, 4, ..., no zeros are allowed. |
logged |
Should the p-values be returned (FALSE) or their logarithm (TRUE)? |
Details
There is a closed form solution for the logistic regression in the case of a single predictor variable. See the references for more information.
Value
info |
A matrix similar to the one produced by the glm command. The estimates, their standard error, the Wald value and the relevant p-value. |
devs |
For the logistic regression case a vector with the null and the residual deviances, their difference and the significance of this difference. |
res |
For the Poisson regression case a vector with the log likelihood ratio test statistic value and its significance. |
Author(s)
Michail Tsagris
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Manos Papadakis <papadakm95@gmail.com>.
References
Stan Lipovetsky (2015). Analytical closed-form solution for binary logit regression by categorical predictors. Journal of Applied Statistics, 42(1): 37–49.
See Also
poisson.anova, poisson.anovas, anova, logistic_only, poisson_only
Examples
y <- rbinom(20000, 1, 0.6)
x <- as.factor( rbinom(20000, 3, 0.5) )
a1 <- logistic.cat1(y, x)
#a2 <- glm(y ~ x, binomial)
y <- rpois(20000, 10)
x <- as.factor( rbinom(20000, 3, 0.5) )
a1 <- poisson.cat1(y, x)
#a2 <- glm(y ~ x, poisson)
x<-y<-a1<-a2<-NULL