Bootstrap t-test for 2 independent samples {Rfast} | R Documentation |
Bootstrap t-test for 2 independent samples
Description
Bootstrap t-test for 2 independent samples.
Usage
boot.ttest2(x, y, B = 999)
Arguments
x |
A numerical vector with the data. |
y |
A numerical vector with the data. |
B |
The number of bootstrap samples to use. |
Details
Instead of sampling B times from each sample, we sample \sqrt{B}
from each of them and then take all pairs.
Each bootstrap sample is independent of each other, hence there is no violation of the theory.
Value
A vector with the test statistic and the bootstrap p-value.
Author(s)
Michail Tsagris and Christina Chatzipantsiou
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Christina Chatzipantsiou <chatzipantsiou@gmail.com>.
References
B.L. Welch (1951). On the comparison of several mean values: an alternative approach. Biometrika, 38(3/4), 330-336.
Efron Bradley and Robert J. Tibshirani (1993). An introduction to the bootstrap. New York: Chapman & Hall/CRC.
Chatzipantsiou C., Dimitriadis M., Papadakis M. and Tsagris M. (2019). Extremely efficient permutation and bootstrap hypothesis tests using R. To appear in the Journal of Modern Applied Statistical Methods.
https://arxiv.org/ftp/arxiv/papers/1806/1806.10947.pdf
See Also
Examples
tic <- proc.time()
x <- rexp(40, 4)
y <- rbeta(50, 2.5, 7.5)
a <- boot.ttest2(x, y, 9999)
a