initValuesOW {RelDists}R Documentation

Initial values and search region for Odd Weibull distribution

Description

This function can be used so as to get suggestions about initial values and the search region for parameter estimation in OW distribution.

Usage

initValuesOW(
  formula,
  data = NULL,
  local_reg = loess.options(),
  interpolation = interp.options(),
  ...
)

Arguments

formula

an object of class formula with the response on the left of an operator ~. The right side must be 1.

data

an optional data frame containing the response variables. If data is not specified, the variables are taken from the environment from which initValuesOW is called.

local_reg

a list of control parameters for LOESS. See loess.options.

interpolation

a list of control parameters for interpolation function. See interp.options.

...

further arguments passed to TTTE_Analytical.

Details

This function performs a non-parametric estimation of the empirical total time on test (TTT) plot. Then, this estimated curve can be used so as to get suggestions about initial values and the search region for parameters based on hazard shape associated to the shape of empirical TTT plot.

Value

Returns an object of class c("initValOW", "HazardShape") containing:

Author(s)

Jaime Mosquera GutiƩrrez jmosquerag@unal.edu.co

Examples

# Example 1
# Bathtuh hazard and its corresponding TTT plot
y1 <- rOW(n = 1000, mu = 0.1, sigma = 7, nu = 0.08)
my_initial_guess1 <- initValuesOW(formula=y1~1)
summary(my_initial_guess1)
plot(my_initial_guess1, par_plot=list(mar=c(3.7,3.7,1,2.5),
                                     mgp=c(2.5,1,0)))

curve(hOW(x, mu = 0.022, sigma = 8, nu = 0.01), from = 0, 
      to = 80, ylim = c(0, 0.04), col = "red", 
      ylab = "Hazard function", las = 1)

# Example 2
# Bathtuh hazard and its corresponding TTT plot with right censored data

y2 <- rOW(n = 1000, mu = 0.1, sigma = 7, nu = 0.08)
status <- c(rep(1, 980), rep(0, 20))
my_initial_guess2 <- initValuesOW(formula=Surv(y2, status)~1)
summary(my_initial_guess2)
plot(my_initial_guess2, par_plot=list(mar=c(3.7,3.7,1,2.5),
                                     mgp=c(2.5,1,0)))

curve(hOW(x, mu = 0.022, sigma = 8, nu = 0.01), from = 0, 
      to = 80, ylim = c(0, 0.04), col = "red", 
      ylab = "Hazard function", las = 1)


[Package RelDists version 1.0.0 Index]