initValuesOW {RelDists} | R Documentation |
Initial values and search region for Odd Weibull distribution
Description
This function can be used so as to get suggestions about initial values
and the search region for parameter estimation in OW
distribution.
Usage
initValuesOW(
formula,
data = NULL,
local_reg = loess.options(),
interpolation = interp.options(),
...
)
Arguments
formula |
an object of class |
data |
an optional data frame containing the response variables. If
data is not specified, the variables are taken from the
environment from which |
local_reg |
a list of control parameters for LOESS. See
|
interpolation |
a list of control parameters for interpolation function. See
|
... |
further arguments passed to
|
Details
This function performs a non-parametric estimation of the empirical total time on test (TTT) plot. Then, this estimated curve can be used so as to get suggestions about initial values and the search region for parameters based on hazard shape associated to the shape of empirical TTT plot.
Value
Returns an object of class c("initValOW", "HazardShape")
containing:
-
sigma.start
value forsigma
parameter of OW distribution. -
nu.start
value fornu
parameter of OW distribution. -
sigma.valid
search region forsigma
parameter of OW distribution. -
nu.valid
search region fornu
parameter of OW distribution. -
TTTplot
Total Time on Test transform computed from the data. -
hazard_type
shape of the hazard function determined from the TTT plot.
Author(s)
Jaime Mosquera GutiƩrrez jmosquerag@unal.edu.co
Examples
# Example 1
# Bathtuh hazard and its corresponding TTT plot
y1 <- rOW(n = 1000, mu = 0.1, sigma = 7, nu = 0.08)
my_initial_guess1 <- initValuesOW(formula=y1~1)
summary(my_initial_guess1)
plot(my_initial_guess1, par_plot=list(mar=c(3.7,3.7,1,2.5),
mgp=c(2.5,1,0)))
curve(hOW(x, mu = 0.022, sigma = 8, nu = 0.01), from = 0,
to = 80, ylim = c(0, 0.04), col = "red",
ylab = "Hazard function", las = 1)
# Example 2
# Bathtuh hazard and its corresponding TTT plot with right censored data
y2 <- rOW(n = 1000, mu = 0.1, sigma = 7, nu = 0.08)
status <- c(rep(1, 980), rep(0, 20))
my_initial_guess2 <- initValuesOW(formula=Surv(y2, status)~1)
summary(my_initial_guess2)
plot(my_initial_guess2, par_plot=list(mar=c(3.7,3.7,1,2.5),
mgp=c(2.5,1,0)))
curve(hOW(x, mu = 0.022, sigma = 8, nu = 0.01), from = 0,
to = 80, ylim = c(0, 0.04), col = "red",
ylab = "Hazard function", las = 1)