dWGEE {RelDists} | R Documentation |
The Weighted Generalized Exponential-Exponential distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the Weighted Generalized Exponential-Exponential distribution
with parameters mu
, sigma
and nu
.
Usage
dWGEE(x, mu, sigma, nu, log = FALSE)
pWGEE(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qWGEE(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rWGEE(n, mu, sigma, nu)
hWGEE(x, mu, sigma, nu)
Arguments
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Weighted Generalized Exponential-Exponential Distribution with parameters mu
,
sigma
and nu
has density given by
f(x)= \sigma \nu \exp(-\nu x) (1 - \exp(-\nu x))^{\sigma - 1} (1 - \exp(-\mu \nu x)) / 1 - \sigma B(\mu + 1, \sigma),
for x > 0
, \mu > 0
, \sigma > 0
and \nu > 0
.
Value
dWGEE
gives the density, pWGEE
gives the distribution
function, qWGEE
gives the quantile function, rWGEE
generates random deviates and hWGEE
gives the hazard function.
Author(s)
Johan David Marin Benjumea, johand.marin@udea.edu.co
References
Mahdavi A (2015). “Two Weighted Distributions Generated by Exponential Distribution.” Journal of Mathematical Extension, 9(1), 1–12.
Mahdavi A (2015). “Two weighted distributions generated by exponential distribution.” Journal of Mathematical Extension, 9, 1–12.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dWGEE(x, mu = 5, sigma = 0.5, nu = 1), from = 0, to = 6,
ylim = c(0, 1), col = "red", las = 1, ylab = "The probability density function")
## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pWGEE(x, mu = 5, sigma = 0.5, nu = 1), from = 0, to = 6,
ylim = c(0, 1), col = "red", las = 1, ylab = "The cumulative distribution function")
curve(pWGEE(x, mu = 5, sigma = 0.5, nu = 1, lower.tail = FALSE),
from = 0, to = 6, ylim = c(0, 1), col = "red", las = 1, ylab = "The Reliability function")
## The quantile function
p <- seq(from = 0, to = 0.99999, length.out = 100)
plot(x = qWGEE(p = p, mu = 5, sigma = 0.5, nu = 1), y = p,
xlab = "Quantile", las = 1, ylab = "Probability")
curve(pWGEE(x, mu = 5, sigma = 0.5, nu = 1), from = 0, add = TRUE,
col = "red")
## The random function
hist(rWGEE(1000, mu = 5, sigma = 0.5, nu = 1), freq = FALSE, xlab = "x",
ylim = c(0, 1), las = 1, main = "")
curve(dWGEE(x, mu = 5, sigma = 0.5, nu = 1), from = 0, add = TRUE,
col = "red", ylim = c(0, 1))
## The Hazard function(
par(mfrow=c(1,1))
curve(hWGEE(x, mu = 5, sigma = 0.5, nu = 1), from = 0, to = 6,
ylim = c(0, 1.4), col = "red", ylab = "The hazard function", las = 1)
par(old_par) # restore previous graphical parameters