dSZMW {RelDists} | R Documentation |
The Sarhan and Zaindin's Modified Weibull distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for Sarhan and Zaindins modified weibull distribution
with parameters mu
, sigma
and nu
.
Usage
dSZMW(x, mu, sigma, nu, log = FALSE)
pSZMW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qSZMW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rSZMW(n, mu, sigma, nu)
hSZMW(x, mu, sigma, nu)
Arguments
x , q |
vector of quantiles. |
mu |
scale parameter. |
sigma |
shape parameter. |
nu |
shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Sarhan and Zaindins modified weibull with parameters mu
,
sigma
and nu
has density given by
f(x)=(\mu + \sigma \nu x^(\nu - 1)) \exp(- \mu x - \sigma x^\nu)
for x > 0
, \mu > 0
, \sigma > 0
and \nu > 0
.
Value
dSZMW
gives the density, pSZMW
gives the distribution
function, qSZMW
gives the quantile function, rSZMW
generates random deviates and hSZMW
gives the hazard function.
Author(s)
Johan David Marin Benjumea, johand.marin@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Sarhan AM, Zaindin M (2009). “Modified Weibull distribution.” APPS. Applied Sciences, 11, 123–136.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dSZMW(x, mu = 2, sigma = 1.5, nu = 0.2), from = 0, to = 2,
ylim = c(0, 1.7), col = "red", las = 1, ylab = "f(x)")
## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pSZMW(x, mu = 2, sigma = 1.5, nu = 0.2), from = 0, to = 2, ylim = c(0, 1),
col = "red", las = 1, ylab = "F(x)")
curve(pSZMW(x, mu = 2, sigma = 1.5, nu = 0.2, lower.tail = FALSE), from = 0,
to = 2, ylim = c(0, 1), col = "red", las = 1, ylab = "R(x)")
## The quantile function
p <- seq(from = 0, to = 0.99999, length.out = 100)
plot(x = qSZMW(p = p, mu = 2, sigma = 1.5, nu = 0.2), y = p, xlab = "Quantile",
las = 1, ylab = "Probability")
curve(pSZMW(x, mu = 2, sigma = 1.5, nu = 0.2), from = 0, add = TRUE, col = "red")
## The random function
hist(rSZMW(n = 1000, mu = 2, sigma = 1.5, nu = 0.2), freq = FALSE, xlab = "x",
las = 1, main = "")
curve(dSZMW(x, mu = 2, sigma = 1.5, nu = 0.2), from = 0, add = TRUE, col = "red")
## The Hazard function
par(mfrow=c(1,1))
curve(hSZMW(x, mu = 2, sigma = 1.5, nu = 0.2), from = 0, to = 3, ylim = c(0, 8),
col = "red", ylab = "Hazard function", las = 1)
par(old_par) # restore previous graphical parameters