dQXGP {RelDists} | R Documentation |
The Quasi XGamma Poisson distribution
Description
Density, distribution function,quantile function,
random generation and hazard function for the Quasi XGamma Poisson distribution
with parameters mu
, sigma
and nu
.
Usage
dQXGP(x, mu, sigma, nu, log = FALSE)
pQXGP(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qQXGP(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rQXGP(n, mu, sigma, nu)
hQXGP(x, mu, sigma, nu)
Arguments
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Quasi XGamma Poisson distribution with parameters mu
,
sigma
and nu
has density given by:
f(x)= K(\mu, \sigma, \nu)(\frac {\sigma^{2} x^{2}}{2} + \mu)
exp(\frac{\nu exp(-\sigma x)(1 + \mu + \sigma x + \frac {\sigma^{2}x^{2}}{2})}{1+\mu} - \sigma x),
for x > 0
, \mu> 0
, \sigma> 0
, \nu> 1
.
where
K(\mu, \sigma, \nu) = \frac{\nu \sigma}{(exp(\nu)-1)(1+\mu)}
Value
dQXGP
gives the density, pQXGP
gives the distribution
function, qQXGP
gives the quantile function, rQXGP
generates random deviates and hQXGP
gives the hazard function.
Author(s)
Simon Zapata
References
Subhradev S, Mustafa C K, Haitham M Y (2018). “The Quasi XGamma-Poisson distribution: Properties and Application.” Istatistik: Journal of the Turkish Statistical Assocation, 11(3), 65–76. ISSN 1300-4077, https://dergipark.org.tr/en/pub/ijtsa/issue/42850/518206.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dQXGP(x, mu=0.5, sigma=1, nu=1), from=0.1, to=8,
ylim=c(0, 0.6), col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pQXGP(x, mu=0.5, sigma=1, nu=1),
from=0.1, to=8, col="red", las=1, ylab="F(x)")
curve(pQXGP(x, mu=0.5, sigma=1, nu=1, lower.tail=FALSE),
from=0.1, to=8, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qQXGP(p, mu=0.5, sigma=1, nu=1), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pQXGP(x, mu=0.5, sigma=1, nu=1),
from=0.1, add=TRUE, col="red")
## The random function
hist(rQXGP(n=1000, mu=0.5, sigma=1, nu=1), freq=FALSE,
xlab="x", ylim=c(0, 0.4), las=1, main="", xlim=c(0, 15))
curve(dQXGP(x, mu=0.5, sigma=1, nu=1),
from=0.001, to=500, add=TRUE, col="red")
## The Hazard function
curve(hQXGP(x, mu=0.5, sigma=1, nu=1), from=0.01, to=3,
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters