| dMOK {RelDists} | R Documentation |
The Marshall-Olkin Kappa distribution
Description
Desnsity, distribution function, quantile function,
random generation and hazard function for the Marshall-Olkin Kappa distribution
with parameters mu, sigma, nu and tau.
Usage
dMOK(x, mu, sigma, nu, tau, log = FALSE)
pMOK(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
qMOK(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
rMOK(n, mu, sigma, nu, tau)
hMOK(x, mu, sigma, nu, tau)
Arguments
x, q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
tau |
parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Marshall-Olkin Kappa distribution with parameters mu,
sigma, nu and tau has density given by:
f(x)=\frac{\tau\frac{\mu\nu}{\sigma}\left(\frac{x}{\sigma}\right)^{\nu-1} \left(\mu+\left(\frac{x}{\sigma}\right)^{\mu\nu}\right)^{-\frac{\mu+1}{\mu}}}{\left[\tau+(1-\tau)\left(\frac{\left(\frac{x}{\sigma}\right)^{\mu\nu}}{\mu+\left(\frac{x}{\sigma}\right)^{\mu\nu}}\right)^{\frac{1}{\mu}}\right]^2}
for x > 0.
Value
dMOK gives the density, pMOK gives the distribution function,
qMOK gives the quantile function, rMOK generates random deviates
and hMOK gives the hazard function.
Author(s)
Angel Muñoz,
References
Javed M, Nawaz T, Irfan M (2018). “The Marshall-Olkin kappa distribution: properties and applications.” Journal of King Saud University-Science.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
par(mfrow = c(1,1))
curve(dMOK(x = x, mu = 1, sigma = 3.5, nu = 3, tau = 2), from = 0, to = 15,
ylab = 'f(x)', col = 2, las = 1)
## The cumulative distribution and the Reliability function
par(mfrow = c(1,2))
curve(pMOK(q = x, mu = 1, sigma = 2.5, nu = 3, tau = 2), from = 0, to = 10,
col = 2, lwd = 2, las = 1, ylab = 'F(x)')
curve(pMOK(q = x, mu = 1, sigma = 2.5, nu = 3, tau = 2, lower.tail = FALSE), from = 0, to = 10,
col = 2, lwd = 2, las = 1, ylab = 'R(x)')
## The quantile function
p <- seq(from = 0.00001, to = 0.99999, length.out = 100)
plot(x = qMOK(p = p, mu = 4, sigma = 2.5, nu = 3, tau = 2), y = p, xlab = 'Quantile',
las = 1, ylab = 'Probability')
curve(pMOK(q = x, mu = 4, sigma = 2.5, nu = 3, tau = 2), from = 0, to = 15,
add = TRUE, col = 2)
## The random function
hist(rMOK(n = 10000, mu = 1, sigma = 2.5, nu = 3, tau = 2), freq = FALSE,
xlab = "x", las = 1, main = '', ylim = c(0,.3), xlim = c(0,20), breaks = 50)
curve(dMOK(x, mu = 1, sigma = 2.5, nu = 3, tau = 2), from = 0, to = 15, add = TRUE, col = 2)
## The Hazard function
par(mfrow = c(1,1))
curve(hMOK(x = x, mu = 1, sigma = 2.5, nu = 3, tau = 2), from = 0, to = 20,
col = 2, ylab = 'Hazard function', las = 1)
par(old_par) # restore previous graphical parameters