dIW {RelDists} | R Documentation |
The Inverse Weibull distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the inverse weibull distribution with
parameters mu
and sigma
.
Usage
dIW(x, mu, sigma, log = FALSE)
pIW(q, mu, sigma, lower.tail = TRUE, log.p = FALSE)
qIW(p, mu, sigma, lower.tail = TRUE, log.p = FALSE)
rIW(n, mu, sigma)
hIW(x, mu, sigma)
Arguments
x , q |
vector of quantiles. |
mu |
scale parameter. |
sigma |
shape parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The inverse weibull distribution with parameters mu
and
sigma
has density given by
f(x) = \mu \sigma x^{-\sigma-1} \exp(\mu x^{-\sigma})
for x > 0
, \mu > 0
and \sigma > 0
Value
dIW
gives the density, pIW
gives the distribution
function, qIW
gives the quantile function, rIW
generates random deviates and hIW
gives the hazard function.
Author(s)
Johan David Marin Benjumea, johand.marin@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Drapella A (1993). “The complementary Weibull distribution: unknown or just forgotten?” Quality and Reliability Engineering International, 9(4), 383–385.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dIW(x, mu=5, sigma=2.5), from=0, to=10,
ylim=c(0, 0.55), col="red", las=1, ylab="f(x)")
#'
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pIW(x, mu=5, sigma=2.5),
from=0, to=10, col="red", las=1, ylab="F(x)")
curve(pIW(x, mu=5, sigma=2.5, lower.tail=FALSE),
from=0, to=10, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qIW(p, mu=5, sigma=2.5), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pIW(x, mu=5, sigma=2.5), from=0, add=TRUE, col="red")
## The random function
hist(rIW(n=10000, mu=5, sigma=2.5), freq=FALSE, xlim=c(0,60),
xlab="x", las=1, main="")
curve(dIW(x, mu=5, sigma=2.5), from=0, add=TRUE, col="red")
## The Hazard function
par(mfrow=c(1,1))
curve(hIW(x, mu=5, sigma=2.5), from=0, to=15, ylim=c(0, 0.9),
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters