dGammaW {RelDists} | R Documentation |
The Gamma Weibull distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the Gamma Weibull distribution
with parameters mu
, sigma
, nu
and tau
.
Usage
dGammaW(x, mu, sigma, nu, log = FALSE)
pGammaW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qGammaW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rGammaW(n, mu, sigma, nu)
hGammaW(x, mu, sigma, nu)
Arguments
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Gamma Weibull Distribution with parameters mu
,
sigma
and nu
has density given by
f(x)= \frac{\sigma \mu^{\nu}}{\Gamma(\nu)} x^{\nu \sigma - 1} \exp(-\mu x^\sigma),
for x > 0
, \mu > 0
, \sigma \geq 0
and \nu > 0
.
Value
dGammaW
gives the density, pGammaW
gives the distribution
function, qGammaW
gives the quantile function, rGammaW
generates random deviates and hGammaW
gives the hazard function.
Author(s)
Johan David Marin Benjumea, johand.marin@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Stacy EW, others (1962). “A generalization of the gamma distribution.” The Annals of mathematical statistics, 33(3), 1187–1192.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dGammaW(x, mu = 0.5, sigma = 2, nu=1), from = 0, to = 6,
col = "red", las = 1, ylab = "f(x)")
## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pGammaW(x, mu = 0.5, sigma = 2, nu=1), from = 0, to = 3,
ylim = c(0, 1), col = "red", las = 1, ylab = "F(x)")
curve(pGammaW(x, mu = 0.5, sigma = 2, nu=1, lower.tail = FALSE),
from = 0, to = 3, ylim = c(0, 1), col = "red", las = 1, ylab = "R(x)")
## The quantile function
p <- seq(from = 0, to = 0.99999, length.out = 100)
plot(x = qGammaW(p = p, mu = 0.5, sigma = 2, nu=1), y = p,
xlab = "Quantile", las = 1, ylab = "Probability")
curve(pGammaW(x, mu = 0.5, sigma = 2, nu=1), from = 0, add = TRUE,
col = "red")
## The random function
hist(rGammaW(1000, mu = 0.5, sigma = 2, nu=1), freq = FALSE, xlab = "x",
ylim = c(0, 1), las = 1, main = "")
curve(dGammaW(x, mu = 0.5, sigma = 2, nu=1), from = 0, add = TRUE,
col = "red", ylim = c(0, 1))
## The Hazard function
par(mfrow=c(1,1))
curve(hGammaW(x, mu = 0.5, sigma = 2, nu=1), from = 0, to = 2,
ylim = c(0, 1), col = "red", ylab = "Hazard function", las = 1)
par(old_par) # restore previous graphical parameters