dGIW {RelDists} | R Documentation |
The Generalized Inverse Weibull distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the Generalized Inverse Weibull distribution
with parameters mu
, sigma
and nu
.
Usage
dGIW(x, mu, sigma, nu, log = FALSE)
pGIW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qGIW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rGIW(n, mu, sigma, nu)
hGIW(x, mu, sigma, nu)
Arguments
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Generalized Inverse Weibull distribution mu
,
sigma
and nu
has density given by
f(x) = \nu \sigma \mu^{\sigma} x^{-(\sigma + 1)} exp \{-\nu (\frac{\mu}{x})^{\sigma}\},
for x > 0.
Value
dGIW
gives the density, pGIW
gives the distribution
function, qGIW
gives the quantile function, rGIW
generates random deviates and hGIW
gives the hazard function.
Author(s)
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Felipe R SdG, Edwin M MO, Gauss M C (2009). “The generalized inverse Weibull distribution.” Statistical papers, 52(3), 591–619. doi:10.1007/s00362-009-0271-3.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dGIW(x, mu=3, sigma=5, nu=0.5), from=0.001, to=8,
col="red", ylab="f(x)", las=1)
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pGIW(x, mu=3, sigma=5, nu=0.5),
from=0.0001, to=14, col="red", las=1, ylab="F(x)")
curve(pGIW(x, mu=3, sigma=5, nu=0.5, lower.tail=FALSE),
from=0.0001, to=14, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qGIW(p, mu=3, sigma=5, nu=0.5), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pGIW(x, mu=3, sigma=5, nu=0.5),
from=0, add=TRUE, col="red")
## The random function
hist(rGIW(n=1000, mu=3, sigma=5, nu=0.5), freq=FALSE,
xlab="x", ylim=c(0, 0.8), las=1, main="")
curve(dGIW(x, mu=3, sigma=5, nu=0.5),
from=0.001, to=14, add=TRUE, col="red")
## The Hazard function
curve(hGIW(x, mu=3, sigma=5, nu=0.5), from=0.001, to=30,
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters