| dExW {RelDists} | R Documentation |
The Extended Weibull distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the Extended Weibull distribution
with parameters mu, sigma and nu.
Usage
dExW(x, mu, sigma, nu, log = FALSE)
pExW(q, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
qExW(p, mu, sigma, nu, lower.tail = TRUE, log.p = FALSE)
rExW(n, mu, sigma, nu)
hExW(x, mu, sigma, nu)
Arguments
x, q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Extended Weibull distribution with parameters mu,
sigma and nu has density given by
f(x) = \frac{\mu \sigma \nu x^{\sigma -1} exp({-\mu x^{\sigma}})} {[1 -(1-\nu) exp({-\mu x^{\sigma}})]^2},
for x > 0.
Value
dExW gives the density, pExW gives the distribution
function, qExW gives the quantile function, rExW
generates random deviates and hExW gives the hazard function.
Author(s)
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Tieling Z, Min X (2007). “Failure Data Analysis with Extended Weibull Distribution.” Communications in Statistics - Simulation and Computation, 36, 579–592. doi:10.1080/03610910701236081.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dExW(x, mu=0.3, sigma=2, nu=0.05), from=0.0001, to=2,
col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pExW(x, mu=0.3, sigma=2, nu=0.05),
from=0.0001, to=2, col="red", las=1, ylab="F(x)")
curve(pExW(x, mu=0.3, sigma=2, nu=0.05, lower.tail=FALSE),
from=0.0001, to=2, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qExW(p, mu=0.3, sigma=2, nu=0.05), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pExW(x, mu=0.3, sigma=2, nu=0.05),
from=0, add=TRUE, col="red")
## The random function
hist(rExW(n=10000, mu=0.3, sigma=2, nu=0.05), freq=FALSE,
xlab="x", ylim=c(0, 2), las=1, main="")
curve(dExW(x, mu=0.3, sigma=2, nu=0.05),
from=0.001, to=4, add=TRUE, col="red")
## The Hazard function
curve(hExW(x, mu=0.3, sigma=2, nu=0.05), from=0.001, to=4,
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters