dEOFNH {RelDists} | R Documentation |
The Extended Odd Frechet-Nadarajah-Haghighi
Description
Density, distribution function, quantile function,
random generation and hazard function for the Extended Odd Fr?chet-Nadarajah-Haghighi distribution
with parameters mu
, sigma
, nu
and tau
.
Usage
dEOFNH(x, mu, sigma, nu, tau, log = FALSE)
pEOFNH(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
qEOFNH(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
rEOFNH(n, mu, sigma, nu, tau)
hEOFNH(x, mu, sigma, nu, tau)
Arguments
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
tau |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
Tthe Extended Odd Frechet-Nadarajah-Haghighi mu
,
sigma
, nu
and tau
has density given by
f(x)= \frac{\mu\sigma\nu\tau(1+\nu x)^{\sigma-1}e^{(1-(1+\nu x)^\sigma)}[1-(1-e^{(1-(1+\nu x)^\sigma)})^{\mu}]^{\tau-1}}{(1-e^{(1-(1+\nu x)^{\sigma})})^{\mu\tau+1}} e^{-[(1-e^{(1-(1+\nu x)^\sigma)})^{-\mu}-1]^{\tau}},
for x > 0
, \mu > 0
, \sigma > 0
, \nu > 0
and \tau > 0
.
Value
dEOFNH
gives the density, pEOFNH
gives the distribution
function, qEOFNH
gives the quantile function, rEOFNH
generates random numbers and hEOFNH
gives the hazard function.
Author(s)
Helber Santiago Padilla
References
Nasiru S (2018). “Extended Odd Fréchet-G Family of Distributions.” Journal of Probability and Statistics, 2018.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
##The probability density function
par(mfrow=c(1,1))
curve(dEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, to=10,
ylim=c(0, 0.25), col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pEOFNH(x,mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from = 0, to = 10,
ylim = c(0, 1), col = "red", las = 1, ylab = "F(x)")
curve(pEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1, lower.tail = FALSE),
from = 0, to = 10, ylim = c(0, 1), col = "red", las = 1, ylab = "R(x)")
##The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qEOFNH(p, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, add=TRUE, col="red")
##The random function
hist(rEOFNH(n=10000, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), freq=FALSE,
xlab="x", las=1, main="")
curve(dEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, add=TRUE, col="red", ylim=c(0,1.25))
##The Hazard function
par(mfrow=c(1,1))
curve(hEOFNH(x, mu=18.5, sigma=5.1, nu=0.1, tau=0.1), from=0, to=10, ylim=c(0, 1),
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters