dEMWEx {RelDists} | R Documentation |
The Exponentiated Modifien Weibull Extension distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the Exponentiated Modifien Weibull Extension distribution
with parameters mu
, sigma
, nu
and tau
.
Usage
dEMWEx(x, mu, sigma, nu, tau, log = FALSE)
pEMWEx(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
qEMWEx(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
rEMWEx(n, mu, sigma, nu, tau)
hEMWEx(x, mu, sigma, nu, tau)
Arguments
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
tau |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Exponentiated Modifien Weibull Extension Distribution with parameters mu
,
sigma
, nu
and tau
has density given by
f(x)= \nu \sigma \tau (\frac{x}{\mu})^{\sigma-1} \exp((\frac{x}{\mu})^\sigma +
\nu \mu (1- \exp((\frac{x}{\mu})^\sigma)))
(1 - \exp (\nu\mu (1- \exp((\frac{x}{\mu})^\sigma))))^{\tau-1} ,
for x > 0
, \nu> 0
, \mu > 0
, \sigma> 0
and \tau > 0
.
Value
dEMWEx
gives the density, pEMWEx
gives the distribution
function, qEMWEx
gives the quantile function, rEMWEx
generates random deviates and hEMWEx
gives the hazard function.
Author(s)
Johan David Marin Benjumea, johand.marin@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Sarhan AM, Apaloo J (2013). “Exponentiated modified Weibull extension distribution.” Reliability Engineering & System Safety, 112, 137–144.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dEMWEx(x, mu = 49.046, sigma =3.148, nu=0.00005, tau=0.1), from=0, to=100,
col = "red", las = 1, ylab = "f(x)")
## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pEMWEx(x, mu = (1/4), sigma =1, nu=1, tau=2), from = 0, to = 1,
ylim = c(0, 1), col = "red", las = 1, ylab = "F(x)")
curve(pEMWEx(x, mu = (1/4), sigma =1, nu=1, tau=2, lower.tail = FALSE),
from = 0, to = 1, ylim = c(0, 1), col = "red", las = 1, ylab = "R(x)")
## The quantile function
p <- seq(from = 0, to = 0.99999, length.out = 100)
plot(x = qEMWEx(p = p, mu = 49.046, sigma =3.148, nu=0.00005, tau=0.1), y = p,
xlab = "Quantile", las = 1, ylab = "Probability")
curve(pEMWEx(x, mu = 49.046, sigma =3.148, nu=0.00005, tau=0.1), from = 0, add = TRUE,
col = "red")
## The random function
hist(rEMWEx(1000, mu = (1/4), sigma =1, nu=1, tau=2), freq = FALSE, xlab = "x",
las = 1, main = "")
curve(dEMWEx(x, mu = (1/4), sigma =1, nu=1, tau=2), from = 0, add = TRUE,
col = "red", ylim = c(0, 0.5))
## The Hazard function(
par(mfrow=c(1,1))
curve(hEMWEx(x, mu = 49.046, sigma =3.148, nu=0.00005, tau=0.1), from = 0, to = 80,
col = "red", ylab = "Hazard function", las = 1)
par(old_par) # restore previous graphical parameters