| dEGG {RelDists} | R Documentation |
The four parameter Exponentiated Generalized Gamma distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the four parameter Exponentiated Generalized Gamma distribution
with parameters mu, sigma, nu and tau.
Usage
dEGG(x, mu, sigma, nu, tau, log = FALSE)
pEGG(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
qEGG(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
rEGG(n, mu, sigma, nu, tau)
hEGG(x, mu, sigma, nu, tau)
Arguments
x, q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
tau |
parameter. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
Four-Parameter Exponentiated Generalized Gamma distribution with parameters mu,
sigma, nu and tau has density given by
f(x) = \frac{\nu \sigma}{\mu \Gamma(\tau)} \left(\frac{x}{\mu}\right)^{\sigma \tau -1} \exp\left\{ - \left( \frac{x}{\mu} \right)^\sigma \right\} \left\{ \gamma_1\left( \tau, \left( \frac{x}{\mu} \right)^\sigma \right) \right\}^{\nu-1} ,
for x > 0.
Value
dEGG gives the density, pEGG gives the distribution
function, qEGG gives the quantile function, rEGG
generates random deviates and hEGG gives the hazard function.
Author(s)
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Gauss M. C, Edwin M.M O, Giovana O. S (2011). “The exponentiated generalized gamma distribution with application to lifetime data.” Journal of Statistical Computation and Simulation, 81(7), 827–842. doi:10.1080/00949650903517874.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.000001, to=1.5, ylim=c(0, 2.5),
col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5),
from=0.000001, to=1.5, col="red", las=1, ylab="F(x)")
curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5, lower.tail=FALSE),
from=0.000001, to=1.5, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qEGG(p, mu=0.1, sigma=0.8, nu=10, tau=1.5), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5),
from=0.00001, add=TRUE, col="red")
## The random function
hist(rEGG(n=100, mu=0.1, sigma=0.8, nu=10, tau=1.5), freq=FALSE,
xlab="x", las=1, main="")
curve(dEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5),
from=0.0001, to=2, add=TRUE, col="red")
## The Hazard function
curve(hEGG(x, mu=0.1, sigma=0.8, nu=10, tau=1.5), from=0.0001, to=1.5,
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters