dBGE {RelDists} | R Documentation |
The Beta Generalized Exponentiated distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the Beta Generalized Exponentiated distribution
with parameters mu
, sigma
, nu
and tau
.
Usage
dBGE(x, mu, sigma, nu, tau, log = FALSE)
pBGE(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
qBGE(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
rBGE(n, mu, sigma, nu, tau)
hBGE(x, mu, sigma, nu, tau)
Arguments
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
parameter. |
tau |
parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
The Beta Generalized Exponentiated Distribution with parameters mu
,
sigma
, nu
and tau
has density given by
f(x)= \frac{\nu \tau}{B(\mu, \sigma)} \exp(-\nu x)(1- \exp(-\nu x))^{\tau \mu - 1} (1 - (1- \exp(-\nu x))^\tau)^{\sigma -1},
for x > 0
, \mu > 0
, \sigma > 0
, \nu > 0
and \tau > 0
.
Value
dBGE
gives the density, pBGE
gives the distribution
function, qBGE
gives the quantile function, rBGE
generates random deviates and hBGE
gives the hazard function.
Author(s)
Johan David Marin Benjumea, johand.marin@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Barreto-Souza W, Santos AH, Cordeiro GM (2010). “The beta generalized exponential distribution.” Journal of Statistical Computation and Simulation, 80(2), 159–172.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dBGE(x, mu = 1.5, sigma =1.7, nu=1, tau=1), from = 0, to = 3,
col = "red", las = 1, ylab = "f(x)")
## The cumulative distribution and the Reliability function
par(mfrow = c(1, 2))
curve(pBGE(x, mu = 1.5, sigma =1.7, nu=1, tau=1), from = 0, to = 6,
ylim = c(0, 1), col = "red", las = 1, ylab = "F(x)")
curve(pBGE(x, mu = 1.5, sigma =1.7, nu=1, tau=1, lower.tail = FALSE),
from = 0, to = 6, ylim = c(0, 1), col = "red", las = 1, ylab = "R(x)")
## The quantile function
p <- seq(from = 0, to = 0.99999, length.out = 100)
plot(x = qBGE(p = p, mu = 1.5, sigma =1.7, nu=1, tau=1), y = p,
xlab = "Quantile", las = 1, ylab = "Probability")
curve(pBGE(x, mu = (1/4), sigma =1, nu=1, tau=2), from = 0, add = TRUE,
col = "red")
## The random function
hist(rBGE(1000, mu = 1.5, sigma =1.7, nu=1, tau=1), freq = FALSE, xlab = "x",
ylim = c(0, 1), las = 1, main = "")
curve(dBGE(x, mu = 1.5, sigma =1.7, nu=1, tau=1), from = 0, add = TRUE,
col = "red", ylim = c(0, 0.5))
## The Hazard function(
par(mfrow=c(1,1))
curve(hBGE(x, mu = 0.9, sigma =0.5, nu=1, tau=1), from = 0, to = 2,
col = "red", ylab = "Hazard function", las = 1)
par(old_par) # restore previous graphical parameters