dAddW {RelDists} | R Documentation |
The Additive Weibull distribution
Description
Density, distribution function, quantile function,
random generation and hazard function for the Additive Weibull distribution
with parameters mu
, sigma
, nu
and tau
.
Usage
dAddW(x, mu, sigma, nu, tau, log = FALSE)
pAddW(q, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
qAddW(p, mu, sigma, nu, tau, lower.tail = TRUE, log.p = FALSE)
rAddW(n, mu, sigma, nu, tau)
hAddW(x, mu, sigma, nu, tau)
Arguments
x , q |
vector of quantiles. |
mu |
parameter. |
sigma |
parameter. |
nu |
shape parameter. |
tau |
shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]. |
p |
vector of probabilities. |
n |
number of observations. |
Details
Additive Weibull Distribution with parameters mu
,
sigma
, nu
and tau
has density given by
f(x) = (\mu\nu x^{\nu - 1} + \sigma\tau x^{\tau - 1}) \exp({-\mu x^{\nu} - \sigma x^{\tau} }),
for x > 0.
Value
dAddW
gives the density, pAddW
gives the distribution
function, qAddW
gives the quantile function, rAddW
generates random deviates and hAddW
gives the hazard function.
Author(s)
Amylkar Urrea Montoya, amylkar.urrea@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Xie M, Lai CD (1996). “Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function.” Reliability Engineering and System Safety, 52, 83–93. doi:10.1016/0951-8320(95)00149-2.
Examples
old_par <- par(mfrow = c(1, 1)) # save previous graphical parameters
## The probability density function
curve(dAddW(x, mu=1.5, sigma=0.5, nu=3, tau=0.8), from=0.0001, to=2,
col="red", las=1, ylab="f(x)")
## The cumulative distribution and the Reliability function
par(mfrow=c(1, 2))
curve(pAddW(x, mu=1.5, sigma=0.5, nu=3, tau=0.8),
from=0.0001, to=2, col="red", las=1, ylab="F(x)")
curve(pAddW(x, mu=1.5, sigma=0.5, nu=3, tau=0.8, lower.tail=FALSE),
from=0.0001, to=2, col="red", las=1, ylab="R(x)")
## The quantile function
p <- seq(from=0, to=0.99999, length.out=100)
plot(x=qAddW(p, mu=1.5, sigma=0.2, nu=3, tau=0.8), y=p, xlab="Quantile",
las=1, ylab="Probability")
curve(pAddW(x, mu=1.5, sigma=0.2, nu=3, tau=0.8),
from=0, add=TRUE, col="red")
## The random function
hist(rAddW(n=10000, mu=1.5, sigma=0.2, nu=3, tau=0.8), freq=FALSE,
xlab="x", las=1, main="")
curve(dAddW(x, mu=1.5, sigma=0.2, nu=3, tau=0.8),
from=0.09, to=5, add=TRUE, col="red")
## The Hazard function
curve(hAddW(x, mu=1.5, sigma=0.2, nu=3, tau=0.8), from=0.001, to=1,
col="red", ylab="Hazard function", las=1)
par(old_par) # restore previous graphical parameters