EEG {RelDists} | R Documentation |
The Extended Exponential Geometric family
Description
The Extended Exponential Geometric family
Usage
EEG(mu.link = "log", sigma.link = "log")
Arguments
mu.link |
defines the mu.link, with "log" link as the default for the mu parameter. |
sigma.link |
defines the sigma.link, with "log" link as the default for the sigma. |
Details
The Extended Exponential Geometric distribution with parameters mu
and sigma
has density given by
f(x)= \mu \sigma \exp(-\mu x)(1 - (1 - \sigma)\exp(-\mu x))^{-2},
for x > 0
, \mu > 0
and \sigma > 0
.
Value
Returns a gamlss.family object which can be used to fit a EEG distribution in the gamlss()
function.
Author(s)
Johan David Marin Benjumea, johand.marin@udea.edu.co
References
Almalki SJ, Nadarajah S (2014). “Modifications of the Weibull distribution: A review.” Reliability Engineering & System Safety, 124, 32–55. doi:10.1016/j.ress.2013.11.010.
Adamidis K, Dimitrakopoulou T, Loukas S (2005). “On an extension of the exponential-geometric distribution.” Statistics & probability letters, 73(3), 259–269.
See Also
Examples
# Generating some random values with
# known mu, sigma, nu and tau
y <- rEEG(n=100, mu = 1, sigma =1.5)
# Fitting the model
require(gamlss)
mod <- gamlss(y~1, sigma.fo=~1, family=EEG,
control=gamlss.control(n.cyc=5000, trace=FALSE))
# Extracting the fitted values for mu, sigma, nu and tau
# using the inverse link function
exp(coef(mod, what='mu'))
exp(coef(mod, what='sigma'))
# Example 2
# Generating random values under some model
n <- 200
x1 <- runif(n, min=0.1, max=0.2)
x2 <- runif(n, min=0.1, max=0.15)
mu <- exp(0.75 - x1)
sigma <- exp(0.5 - x2)
x <- rEEG(n=n, mu, sigma)
mod <- gamlss(x~x1, sigma.fo=~x2, family=EEG,
control=gamlss.control(n.cyc=5000, trace=FALSE))
coef(mod, what="mu")
coef(mod, what="sigma")