| classifySupv {RecordLinkage} | R Documentation |
Supervised Classification
Description
Supervised classification of record pairs based on a trained model.
Usage
classifySupv(model, newdata, ...)
## S4 method for signature 'RecLinkClassif,RecLinkData'
classifySupv(model, newdata,
convert.na = TRUE, ...)
## S4 method for signature 'RecLinkClassif,RLBigData'
classifySupv(model, newdata,
convert.na = TRUE, withProgressBar = (sink.number()==0), ...)
Arguments
model |
Object of class |
newdata |
Object of class |
convert.na |
Logical. Whether to convert missing values in the comparison patterns to 0. |
withProgressBar |
Whether to display a progress bar |
... |
Further arguments for the |
Details
The record pairs in newdata are classified by calling
the appropriate predict method for model$model.
By default, the "RLBigDataDedup" method displays a
progress bar unless output is diverted by sink, e.g. when processing
a Sweave file.
Value
For the "RecLinkData" method, a S3 object
of class "RecLinkResult" that represents a copy
of newdata with element rpairs$prediction, which stores
the classification result, as addendum.
For the "RLBigData" method, a S4 object of class
"RLResult".
Author(s)
Andreas Borg, Murat Sariyar
See Also
trainSupv for training of classifiers,
classifyUnsup for unsupervised classification.
Examples
# Split data into training and validation set, train and classify with rpart
data(RLdata500)
pairs=compare.dedup(RLdata500, identity=identity.RLdata500,
blockfld=list(1,3,5,6,7))
l=splitData(pairs, prop=0.5, keep.mprop=TRUE)
model=trainSupv(l$train, method="rpart", minsplit=5)
result=classifySupv(model=model, newdata=l$valid)
summary(result)