forestWeight {Rborist} | R Documentation |
Meinshausen forest weights
Description
Normalized observation counts across a prediction set.
Usage
## Default S3 method:
forestWeight(objTrain, prediction, sampler=objTrain$sampler,
nThread=0, verbose = FALSE, ...)
Arguments
objTrain |
an object of class |
prediction |
an object of class |
sampler |
an object of class |
nThread |
specifies a prefered thread count. |
verbose |
whether to output progress of weighting. |
... |
not currently used. |
Value
a numeric matrix having rows equal to the Meinshausen weight of each new datum.
Author(s)
Mark Seligman at Suiji.
References
Meinshausen, N. (2016) Quantile Random Forests. Journal of Machine Learning Research 17(1), 1-68.
See Also
Examples
## Not run:
# Regression example:
nRow <- 5000
x <- data.frame(replicate(6, rnorm(nRow)))
y <- with(x, X1^2 + sin(X2) + X3 * X4) # courtesy of S. Welling.
rb <- Rborist(x,y)
newdata <- data.frame(replace(6, rnorm(nRow)))
# Performs separate prediction on new data, saving indices:
pred <- predict(rb, newdata, indexing=TRUE)
weights <- forestWeight(rb, pred)
obsIdx <- 215 # Arbitrary observation index (zero-based row number)
# Inner product should equal prediction, modulo numerical vagaries:
yPredApprox <- weights[obsIdx,] %*% y
print((yPredApprox - pred$yPred[obsIdx])/yPredApprox)
## End(Not run)
[Package Rborist version 0.3-7 Index]