in.da {Radviz} | R Documentation |
Optimization functions for Dimensional Anchors in Radviz
Description
Visual efficiency of Radviz plots depends heavily on the correct arrangement of Dimensional Anchors. These functions implement the optimization strategies described in Di Caro et al 2012
Usage
in.da(springs, similarity)
rv.da(springs, similarity)
Arguments
springs |
A matrix of 2D dimensional anchor coordinates, as returned by |
similarity |
A similarity matrix measuring the correlation between Dimensional Anchors |
Details
Following the recommendation of Di Caro *et al.* we used a cosine function to calculate
the similarity between Dimensional Anchors (see cosine
for details).
The in.da function implements the independent similarity measure,
where the value increases as the Radviz projection improves.
The rv.da function implements the radviz-dependent similarity measure,
where the value decreases as the Radviz projection improves.
Value
A measure of the efficiency of the Radviz projection of the similarity matrix onto a set of springs
Author(s)
Yann Abraham
Examples
data(iris)
das <- c('Sepal.Length','Sepal.Width','Petal.Length','Petal.Width')
S <- make.S(das)
mat <- iris[,das]
sim.mat <- cosine(mat)
in.da(S,sim.mat)
rv.da(S,sim.mat)