clustexp {RaceID} | R Documentation |
Clustering of single-cell transcriptome data
Description
This functions performs the initial clustering of the RaceID3 algorithm.
Usage
clustexp(
object,
sat = TRUE,
samp = NULL,
cln = NULL,
clustnr = 30,
bootnr = 50,
rseed = 17000,
FUNcluster = "kmedoids",
verbose = TRUE
)
Arguments
object |
|
sat |
logical. If |
samp |
Number of random sample of cells used for the inference of cluster number and for inferring Jaccard similarities. Default is 1000. |
cln |
Number of clusters to be used. Default is |
clustnr |
Maximum number of clusters for the derivation of the cluster number by the saturation of mean within-cluster-dispersion. Default is 30. |
bootnr |
Number of booststrapping runs for |
rseed |
Integer number. Random seed to enforce reproducible clustering results. Default is 17000. |
FUNcluster |
Clustering method used by RaceID3. One of |
verbose |
logical. If |
Value
SCseq
object with clustering data stored in slot cluster
and slot clusterpar
. The clustering partition is stored in
cluster$kpart
.
Examples
sc <- SCseq(intestinalDataSmall)
sc <- filterdata(sc)
sc <- compdist(sc)
sc <- clustexp(sc)