Rajive {RaJIVE}R Documentation

Robust Angle based Joint and Individual Variation Explained

Description

Computes the robust aJIVE decomposition with parallel computation.

Usage

Rajive(
  blocks,
  initial_signal_ranks,
  full = TRUE,
  n_wedin_samples = 1000,
  n_rand_dir_samples = 1000,
  joint_rank = NA
)

Arguments

blocks

List. A list of the data matrices.

initial_signal_ranks

Vector. The initial signal rank estimates.

full

Boolean. Whether or not to store the full J, I, E matrices or just their SVDs (set to FALSE to save memory).

n_wedin_samples

Integer. Number of wedin bound samples to draw for each data matrix.

n_rand_dir_samples

Integer. Number of random direction bound samples to draw.

joint_rank

Integer or NA. User specified joint_rank. If NA will be estimated from data.

Value

The aJIVE decomposition.

Examples


n <- 50
pks <- c(100, 80, 50)
Y <- ajive.data.sim(K =3, rankJ = 3, rankA = c(7, 6, 4), n = n,
                   pks = pks, dist.type = 1)
initial_signal_ranks <-  c(7, 6, 4)
data.ajive <- list((Y$sim_data[[1]]), (Y$sim_data[[2]]), (Y$sim_data[[3]]))
ajive.results.robust <- Rajive(data.ajive, initial_signal_ranks)



[Package RaJIVE version 1.0 Index]