sym.predict {RSDA} | R Documentation |
Predict method to CM and CRM regression model
Description
To execute predict method the Center Method (CR) and Center and Range Method (CRM) to Linear regression.
Usage
sym.predict(model, ...)
## S3 method for class 'symbolic_lm_cm'
sym.predict(model, new.sym.data, ...)
## S3 method for class 'symbolic_lm_crm'
sym.predict(model, new.sym.data, ...)
## S3 method for class 'symbolic_glm_cm'
sym.predict(model, new.sym.data, response, ...)
## S3 method for class 'symbolic_glm_crm'
sym.predict(model, new.sym.data, response, ...)
Arguments
model |
The output of lm method. |
... |
additional arguments affecting the predictions produced. |
new.sym.data |
Should be a symbolic data table read with the function read.sym.table(...). |
response |
The number of the column where is the response variable in the interval data table. |
Value
sym.predict produces a vector of predictions or a matrix of predictions and bounds with column names fit, lwr, and upr if interval is set. For type = 'terms' this is a matrix with a column per term and may have an attribute 'constant'
Author(s)
Oldemar Rodriguez Rojas
References
LIMA-NETO, E.A., DE CARVALHO, F.A.T., (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis 52, 1500-1515.
LIMA-NETO, E.A., DE CARVALHO, F.A.T., (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis 54, 333-347.
See Also
sym.glm
Examples
data(int_prost_train)
data(int_prost_test)
model <- sym.lm(lpsa ~ ., sym.data = int_prost_train, method = "cm")
pred.cm <- sym.predict(model, int_prost_test)
pred.cm