sym.knn {RSDA} | R Documentation |
Symbolic k-Nearest Neighbor Regression
Description
Symbolic k-Nearest Neighbor Regression
Usage
sym.knn(
formula,
sym.data,
method = c("cm", "crm"),
scale = TRUE,
kmax = 20,
kernel = "triangular"
)
Arguments
formula |
a formula object. |
sym.data |
symbolc data.table |
method |
cm or crm |
scale |
logical, scale variable to have equal sd. |
kmax |
maximum number of k, if ks is not specified. |
kernel |
kernel to use. Possible choices are "rectangular" (which is standard unweighted knn), "triangular", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "triweight" (or beta(4,4)), "cos", "inv", "gaussian" and "optimal". |
References
Lima-Neto, E.A., De Carvalho, F.A.T., (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis52, 1500-1515
Lima-Neto, E.A., De Carvalho, F.A.T., (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis 54, 333-347
Lima Neto, E.d.A., de Carvalho, F.d.A.T. Nonlinear regression applied to interval-valued data. Pattern Anal Applic 20, 809–824 (2017). https://doi.org/10.1007/s10044-016-0538-y
Rodriguez, O. (2018). Shrinkage linear regression for symbolic interval-valued variables.Journal MODULAD 2018, vol. Modulad 45, pp.19-38