| Sym.PCA.Hist.PCA.k.plot {RSDA} | R Documentation | 
Sym.PCA.Hist.PCA.k.plot
Description
Sym.PCA.Hist.PCA.k.plot
Usage
Sym.PCA.Hist.PCA.k.plot(
  data.sym.df,
  title.graph,
  concepts.name,
  title.x,
  title.y,
  pca.axes
)
Arguments
| data.sym.df | Bins's projections | 
| title.graph | Plot title | 
| concepts.name | Concepts names | 
| title.x | Label of axis X | 
| title.y | Label of axis Y | 
| pca.axes | Principal Component | 
Value
Concepts projected onto the Principal component chosen
Author(s)
Jorge Arce Garro
Examples
## Not run: 
data("hardwoodBrito")
Hardwood.histogram<-hardwoodBrito
Hardwood.cols<-colnames(Hardwood.histogram)
Hardwood.names<-row.names(Hardwood.histogram)
 M<-length(Hardwood.cols)
 N<-length(Hardwood.names)
 BIN.Matrix<-matrix(rep(3,N*M),nrow = N)
pca.hist<-sym.histogram.pca(Hardwood.histogram,BIN.Matrix)
Hardwood.quantiles.PCA<-quantiles.RSDA(pca.hist$sym.hist.matrix.PCA,3)
ACER.p1<-Sym.PCA.Hist.PCA.k.plot(data.sym.df = pca.hist$Bins.df,
                                    title.graph = " ",
                                    concepts.name = c("ACER"),
                                    title.x = "First Principal Component (84.83%)",
                                    title.y = "Frequency",
                                    pca.axes = 1)
ACER.p1
## End(Not run)
[Package RSDA version 3.2.1 Index]