R2.L {RSDA} | R Documentation |
Lower boundary correlation coefficient.
Description
Compute the lower boundary correlation coefficient for two interval variables.
Usage
R2.L(ref, pred)
Arguments
ref |
Variable that was predicted. |
pred |
The prediction given by the model. |
Value
The lower boundary correlation coefficient.
Author(s)
Oldemar Rodriguez Rojas
References
LIMA-NETO, E.A., DE CARVALHO, F.A.T., (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis 52, 1500-1515.
LIMA-NETO, E.A., DE CARVALHO, F.A.T., (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis 54, 333-347.
See Also
sym.glm
Examples
data(int_prost_train)
data(int_prost_test)
res.cm <- sym.lm(lpsa ~ ., sym.data = int_prost_train, method = "cm")
pred.cm <- sym.predict(res.cm, int_prost_test)
R2.L(int_prost_test$lpsa, pred.cm$Fitted)
[Package RSDA version 3.2.1 Index]