scaleCov {RRPP} | R Documentation |
Scaling of a Covariance Matrix
Description
Function performs linear and exponential scaling of a covariance, either including or excluding diagonals or off-diagonal elements.
Usage
scaleCov(
Cov,
scale. = 1,
exponent = 1,
scale.diagonal = FALSE,
scale.only.diagonal = FALSE
)
Arguments
Cov |
Square matrix to be scaled. |
scale. |
The linear scaling parameter. Values are multiplied by this numeric value. |
exponent |
The exponentiation scaling parameter. Values are raised to this power. |
scale.diagonal |
Logical to indicate if diagonal should be included. |
scale.only.diagonal |
Logical to indicate if only the diagonal should be scaled. |
Details
The function scales covariances as scale * cov ^exponent, where cov is any covariance or variance in the covariance matrix. Arguments allow inclusion or exclusion or either the diagonal or off-diagonal elements to be scaled. It is assumed that a covariance matrix is scaled, but any square matrix will work.
Value
A square matrix.
Author(s)
Michael Collyer
Examples
## Not run:
data(Pupfish)
Pupfish$logSize <- log(Pupfish$CS)
fit1 <- lm.rrpp(coords ~ logSize, data = Pupfish, iter = 0,
print.progress = FALSE)
fit2 <- lm.rrpp(coords ~ Pop, data = Pupfish, iter = 0,
print.progress = FALSE)
fit3 <- lm.rrpp(coords ~ Sex, data = Pupfish, iter = 0,
print.progress = FALSE)
fit4 <- lm.rrpp(coords ~ logSize + Sex, data = Pupfish, iter = 0,
print.progress = FALSE)
fit5 <- lm.rrpp(coords ~ logSize + Pop, data = Pupfish, iter = 0,
print.progress = FALSE)
fit6 <- lm.rrpp(coords ~ logSize + Sex * Pop, data = Pupfish, iter = 0,
print.progress = FALSE)
modComp1 <- model.comparison(fit1, fit2, fit3, fit4, fit5,
fit6, type = "cov.trace")
modComp2 <- model.comparison(fit1, fit2, fit3, fit4, fit5,
fit6, type = "logLik", tol = 0.01)
summary(modComp1)
summary(modComp2)
par(mfcol = c(1,2))
plot(modComp1)
plot(modComp2)
# Comparing fits with covariance matrices
# an example for scaling a phylogenetic covariance matrix with
# the scaling parameter, lambda
data("PlethMorph")
Cov <- PlethMorph$PhyCov
lambda <- seq(0, 1, 0.1)
Cov1 <- scaleCov(Cov, scale. = lambda[1])
Cov2 <- scaleCov(Cov, scale. = lambda[2])
Cov3 <- scaleCov(Cov, scale. = lambda[3])
Cov4 <- scaleCov(Cov, scale. = lambda[4])
Cov5 <- scaleCov(Cov, scale. = lambda[5])
Cov6 <- scaleCov(Cov, scale. = lambda[6])
Cov7 <- scaleCov(Cov, scale. = lambda[7])
Cov8 <- scaleCov(Cov, scale. = lambda[8])
Cov9 <- scaleCov(Cov, scale. = lambda[9])
Cov10 <- scaleCov(Cov, scale. = lambda[10])
Cov11 <- scaleCov(Cov, scale. = lambda[11])
fit1 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov1)
fit2 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov2)
fit3 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov3)
fit4 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov4)
fit5 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov5)
fit6 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov6)
fit7 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov7)
fit8 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov8)
fit9 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov9)
fit10 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov10)
fit11 <- lm.rrpp(SVL ~ 1, data = PlethMorph, Cov = Cov11)
par(mfrow = c(1,1))
MC1 <- model.comparison(fit1, fit2, fit3, fit4, fit5, fit6,
fit7, fit8, fit9, fit10, fit11,
type = "logLik")
MC1
plot(MC1)
MC2 <- model.comparison(fit1, fit2, fit3, fit4, fit5, fit6,
fit7, fit8, fit9, fit10, fit11,
type = "logLik", predictor = lambda)
MC2
plot(MC2)
MC3 <- model.comparison(fit1, fit2, fit3, fit4, fit5, fit6,
fit7, fit8, fit9, fit10, fit11,
type = "Z", predictor = lambda)
MC3
plot(MC3)
## End(Not run)