imputedGLMnetwork {RNAseqNet} | R Documentation |
Multiple hot-deck imputation and network inference from RNA-seq data.
Description
imputedGLMnetwork
performs a multiple hot-deck imputation and infers a
network for each imputed dataset with a log-linear Poisson graphical model
(LLGM).
Usage
imputedGLMnetwork(X, Y, sigma, m = 50, lambdas = NULL, B = 20)
Arguments
X |
n x p numeric matrix containing RNA-seq expression with missing rows (numeric matrix or data frame) |
Y |
auxiliary dataset (n' x q numeric matrix or data frame) |
sigma |
affinity threshold for donor pool |
m |
number of replicates in multiple imputation (integer). Default to 50 |
lambdas |
a sequence of decreasing positive numbers to control the
regularization (numeric vector). Default to |
B |
number of iterations for stability selection. Default to 20 |
Details
When input lambdas
are null the default sequence of
glmnet
for the first model (the one with the first
column of count
as the target) is used. A common default sequence is
generated for all imputed datasets using this method.
Value
S3 object of class HDpath
: a list consisting of
path |
a list of |
efreq |
a numeric matrix of size p x p, which indicates the
number of times an edge has been predicted among the |
Author(s)
Alyssa Imbert, alyssa.imbert@gmail.com
Nathalie Vialaneix, nathalie.vialaneix@inrae.fr
References
Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btx819.
Examples
data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 10))
## Not run:
lung_hdmi <- imputedGLMnetwork(lung, thyroid, sigma = 2, lambdas = lambdas,
m = 10, B = 5)
## End(Not run)