imputeHD {RNAseqNet} | R Documentation |
Impute missing row datasets with multiple hot deck.
Description
imputeHD
performs multiple hot-deck imputation on an input data frame
with missing rows. Each missing row is imputed with a unique donor. This
method requires an auxiliary dataset to compute similaritities between
individuals and create the pool of donors.
Usage
imputeHD(X, Y, sigma, m = 50, seed = NULL)
Arguments
X |
n x p numeric matrix containing RNA-seq expression with missing rows (numeric matrix or data frame) |
Y |
auxiliary dataset (n' x q numeric matrix or data frame) |
sigma |
threshold for hot-deck imputation (numeric, positive) |
m |
number of replicates in multiple imputation (integer). Default to 50 |
seed |
single value, interpreted as an in integer, used to initialize
the random number generation state. Default to |
Details
Missing values are identified by matching rownames in X
and
Y
. If rownames are not provided the missing rows in X
are
supposed to correspond to the last rows of Y
.
Value
S3 object of class HDImputed
: a list consisting of
donors |
a list. Each element of this list contains the donor pool for every missing observations |
draws |
a data frame which indicates which donor was chosen for each missing samples |
data |
a list of |
Author(s)
Alyssa Imbert, alyssa.imbert@gmail.com
Nathalie Vialaneix, nathalie.vialaneix@inrae.fr
References
Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. doi:10.1093/bioinformatics/btx819.
See Also
chooseSigma
, imputedGLMnetwork
Examples
data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
imputed_lung <- imputeHD(lung, thyroid, sigma = 2)