GLMnetwork {RNAseqNet} | R Documentation |
Infer a network from RNA-seq expression.
Description
GLMnetwork
infers a network from RNA-seq expression with the
log-linear Poisson graphical model of (Allen and Liu, 2012).
Usage
GLMnetwork(counts, lambdas = NULL, normalize = TRUE)
Arguments
counts |
a n x p matrix of RNA-seq expression (numeric matrix or data frame) |
lambdas |
a sequence of decreasing positive numbers to control the
regularization (numeric vector). Default to |
normalize |
logical value to normalize predictors in the log-linear
Poisson graphical model. If |
Details
When input lambdas
are null the default sequence of
glmnet
for the first model (the one with the first
column of count
as the target) is used.
Value
S3 object of class GLMnetwork
: a list consisting of
lambda |
regularization parameters used for LLGM path(vector) |
path |
a list having the same length than |
Author(s)
Alyssa Imbert, alyssa.imbert@gmail.com
Nathalie Vialaneix, nathalie.vialaneix@inrae.fr
References
Allen, G. and Liu, Z. (2012) A log-linear model for inferring genetic networks from high-throughput sequencing data. In Proceedings of IEEE International Conference on Bioinformatics and Biomedecine (BIBM).
See Also
Examples
data(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 10))
ref_lung <- GLMnetwork(lung, lambdas = lambdas)